首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

2.
在一元二次方程ax2+bx+c=0(a≠0)中,常常隐含着a+b+c=0,此时方程的根究竟有什么特征呢?下面我们来研究这个问题。首先,为了能更清楚地看到方程与系数的关系,我们可以先由a+b+c=0,得b=-(a+c),代入方程消去b,得ax2-(a+c)x+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,哈,原来方程的两根为x1=1,x2=ca。由此,我们得到如下一个结论:当a+b+c=0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的一根为1,另一根为ca。运用这个简单的结论解决一些相关的问题十分简洁。请看:例1解方程:穴3姨-2雪x2+穴1-3姨-2姨雪x+2姨+1=0分析:直接用解一元二次方程的方法求解显然很…  相似文献   

3.
一元二次方程是初中数学学习的重点.本文给出一元二次方程的两个性质,并举例说明其应用,供同学们学习参考.一、性质性质1:在一元二次方程ax2+bx+c=0 (a≠0)中,若a+b+c=0,则x1=1,x2=ca. 证明:由a+b+c=0,得b=-a-c.将其代入原方程,得ax2+(-a-c)x+c=0,即(x-1)(ax-c)=0.因此,x1=1,x2=ca. 下面是一个类似的性质:性质2:在一元二次方程ax2+bx+c=0 (a≠0)中,若b=a+c,则x1=-1,x2=-ca.(证明略)二、应用举例例1解下列方程:(1)8x2+15x-23=0;(2)5x2+11x+6=0. 解:(1)∵8+15-23=0,∴x1=1,x2=-238.(2)∵11=5+6,∴x1=-1,x2=-6…  相似文献   

4.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

5.
性质1 若a+b+c=0,则方程ax2+bx+c=0有一个根是1. 证明:∵a+b+c=0,∴c=-(a+b).∴ax2+bx-(a+b)=0.∴(x-1)(ax+a+b)=0.∴x=1或x=-1-b/a.  相似文献   

6.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

7.
一、要注意分母的值不能为零例1(1997年山西省中考题)当x=时,分式(x-|3x)|(-x1+1)的值为零·解:由|x|-1=0,得x=1或x=-1;当x=-1时,分母(x-3)(x+1)=0,所以x=1时,上述分式的值为零·二、要注意不要盲目通分例2(1997年西宁市中考题)当a=3,b=2时,求代数式a+ba2+2ab+b2-ba22--abb2的值解:待求式=a+b(a+b)2+(a+b(ba)(-ab)-b)=a1+b+a+bb=a1++bb=33+2=3(2-3)·三、要注意运用换元技巧例3(1997年云南省中考题)1x2+3x+2+1x2+5x+6+x2+41x+3·解:因为原式=(x+1)1(x+2)+1(x+2)(x+3)+(x+3)1(x+1),所以设x+1=a,x+2=b,x+3=c,则原式=a1b+b1c+c1a=a+abbc+c=(x+1…  相似文献   

8.
袁亚良 《时代数学学习》2006,(10):26-26,31,32,25
一、选择题(每小题2分,共16分)1.下列各式的变形:(1)若a=b,则3a=3b;(2)若a=b,则-3a+5=-3b+5;(3)若ac2=bc2,则a=b;(4)若ca2=cb2,则a=b.其中不正确的共有().(A)1个(B)2个(C)3个(D)4个2.解方程x-31-4-2x=1,去分母正确的是().(A)2(x-1)-3(4-x)=1(B)2x-1-12+x=1(C)2x-2-12-3x=6(D)2(x-1)-3(4-x)=63.关于x的方程(a-1)x2-ax+1=0是一元一次方程,则a的值等于().(A)0(B)1(C)±1(D)-14.解方程54(45x-30)=7,较简便的是().(A)先去分母(B)先去括号(C)先两边都除以54(D)先两边都乘以545.下列方程中,解为x=0的是().(A)7x2-5=143(B)2[5(3-x)]=9(C)72(…  相似文献   

9.
如果一元二次方程ax2+bx+c =0(a≠0)有两个实数根x1,x2,那么有x1+x2=-b/a,x1x2=c/a,这就是根与系数的关系,简称为韦达定理.根与系数的关系应用很广泛,下面举例说明. 一、求一元二次方程的两根的和与积 例1 (1)(2013年雅安卷)已知x1,x2是一元二次方程x2-2x=-0的两根,则x1+x2的值是(). A.0 B.2 C.-2 D.4 (2)(2013年武汉卷)若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1·x2的值是(). A.3 B.-3 C.2 D.-2 解析:(1)对于方程x2-2x=0,a=1,b=-2,.∴.x1+x2=2=--2/1=2.故选B. (2)对于方程x2-2x-3=0,a=1,b=-2,c=-3,∴.x1·x2=c/a=-3/2=-3.故选B.  相似文献   

10.
错在哪里     
忽视验证致错 已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,求f(2)的值. 错解:f'(x) =3x2 +2ax+b. 由题意得{f'(1)=0,f(1)=10(=){3+2a+b=0,1+a+b+a2=10(=){a=4,b=-11或{a=-3,b=3.  相似文献   

11.
周奕生 《初中生》2003,(27):28-29
我叫判别式,外号,是一元二次方程庄园内的常客.我的外貌是=b2-4ac,身上的a、b、c是一元二次方程ax2+bx+c=0(a≠0)的三数,要想在一元二次方程中找到我,首先必须把方程化为一般形式.例如,在一元二次方程12x2+3x=1中,你如果想知道我是多少,必须先把方程化为一般形式12x2+3x-1=0,然后把a=12,b=3,c=-1代入b2-4ac计算便可知=b2-4ac=11.此时若把方程化为x2+6x-2=0,我又摇身一变,变成了=b2-4ac=44.有人对此疑惑不解,怎么一个方程会有两个不同的判别式呢?其实大家不必大惊小怪,我是个虚怀若谷、不计小节的人.你说我是11,还是说我是44,我都会默默地接…  相似文献   

12.
在分式加减运算中,若能根据分式的结构特点,使用通分的技巧,不仅可以保证运算的正确性,而且可以提高解题的速度,收到事半功倍之效。一、整体通分例1计算x3x-1-x2-x-1。解:原式=x3x-1-(x2+x+1)=x3x-1-(x-1)(x2+x+1)x-1=x3x-1-x3-1x-1=1x-1。二、拆项通分例2计算a-bab+b-cbc+c-aca。解:原式=(1b-1a)+(1c-1b)+(1a-1c)=1b-1a+1c-1b+1a-1c=0。三、一次通分例3计算1x2+3x+2+1x2+5x+6+1x2+4x+4。解:原式=1(x+1)(x+2)+1(x+2)(x+3)+1(x+1)(x+3)=x+3+x+1+x+2(x+1)(x+2)(x+3)=3(x+2)(x+1)(x+2)(x+3)=3(x+1)(x+3)。四、逐步通分例4计算1x-1-1x+1-2x2+1。…  相似文献   

13.
病例诊疗     
例1(2003年甘肃省)下列方程中,关于x的一元二次方程是().(A)3(x+1)2=2(x+1)(B)1x2+1x-2=0(C)ax2+bx+c=0(D)x2+2x=x2-1错解由一元二次方程的一般形式,可知答案为C.分析错误在于对一元二次方程的概念理解不清,忽略了一元二次方程ax2+bx+c=0中a≠0的条件.由于B不是整式方程;C没有说明a≠0,不能确定一定是二次方程;D经过整理后是一元一次方程;只有A是一元二次方程,故选A.说明判定一个方程是否是一元二次方程不能只看方程形式,被表面形式所迷惑,而要抓住定义的实质,常常需要整理之后,看是否同时满足定义中的条件才能确定.例2(1999年吉林省)一…  相似文献   

14.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

15.
一元二次方程根的判别式是初中数学中的一个重要内容,应用其解题是初中数学中的一种重要方法.在近年来全国各省市数学竞赛中屡见不鲜,本文举例说明其广泛应用,供参考.一、求参数值例1(2003年全国初中数学竞赛天津赛区初赛)已知二次函数y=ax2+bx+c,一次函数y=k(x-1)-k24,若它们的图象对于任意的实数k都只有一个公共点,则二次函数的解析式为.解:由题意得y2=ax+bx+cy=k(x-1)-k24整理得:ax2+(b-k)x+(c+k+k24)=0.又由根的判别式Δ=(b-k)2-4a(c+k+k24)=0,即(1-a)k2-2(b+2a)k+(b2-4ac)=0.(1)由于(1)中对任意的实数k均成立,故解得a=1,b=-2,c=1.二、…  相似文献   

16.
1.构造等式例 1.已知 x+ y+ z=3,求3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3 的值。解 :根据所求代数式的结构特征 ,可构造恒等式 :a3 + b3 + c3 - 3abc=(a+ b+ c) (a2 + b2 + c2 -ab- bc- ac)。设 a=x- 1,b=y- 1,c=z-1,有 a+ b+ c=x+ y+ z- 3=0。将上面三式代入恒等式得 :(x- 1) 3 + (y- 1) 3 + (z- 1) 3- 3(x- 1) (y- 1) (z- 1) =0 ,∴ 3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3=1。2 .构造不等式例 2 .实数 a、b、c、d满足 a+b+ c+ d=5 ,a2 + b2 + c2 + d2 =7,求 a的范围。解 :根据第一个等式的平方与第二个等…  相似文献   

17.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

18.
△ =b2 - 4ac叫做一元二次方程 ax2 + bx+ c=0(a≠ 0 )的根的判别式。灵活应用它 ,不仅可以解答一些与一元二次方程有关的问题 ,一些非一元二次方程问题也可获得巧妙解答。一、与一元二次方程有关的问题例 1 若方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,则方程 x2 + ax+ b=0的两根分别是 (   )(A) 0 ,3;(B) 0 ,- 3;(C) 1,4 ;(D) 1。解 :由方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,∴△ =(a- 3) 2 - 4(- 3a- b2 ) - 0 ,∴ (a+ 3) 2 + 4 b2 =0。∵ (a+ 3) 2≥ 0 ,4 b2≥ 0 ,∴ a=- 3,b=0。这时 ,要求的方程即为 x2 - 3x=0∴ x1=0 ,x2 …  相似文献   

19.
对于一元二次方程ax~2+bx+c=0 (a≠0),如果a+b+c=0.那么x=1是这个方程的解.运用这一简单结沦可以巧妙解决一类竞赛题.例1设方程2004~2x~2-2003·2005x-1 =0的大根为a,方程x~2+2004x-2005=0的  相似文献   

20.
画函数的图象、求函数的极值、判断函数的奇偶性、确定函数的单调区间等,一般都要以解析式y=f(x)为基础。因之,求出f(x)是必要的。下面介绍几种求法。一待定系数法例1.已知:f(x)为有理整函数且 f(2x)+f(3x+1)=13x~2+6x-1 求:f(x) 解:设f(x)=ax~2+bx+c 则f(2x)+f(3x+1) =13ax~2+(6a+5b)x+a+b+2c ∵ 13ax~2+(6a+5b)x+(a+b+2c) =13x~2+6x-1比较系数得则f(x)=x~2-1。二换元法例2若:f[f(x)]=(x+1)/(x+2)求:f(x)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号