首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
复合函数极限问题在数学教学中经常遇到。复合函数极限当外层函数y=f(x)在u=α处不连续的情况下,limfx→r0[ψx)]=limf u→α(u)=A是否成立。  相似文献   

2.
极限是从已知认识未知 ,从有限认识无限 ,从近似认识精确的一种数学方法。定义有序变量的极限 ,可将数学分析中limf(x) =Ax→x0 与limf(x) =Ax→∞ 的极限定义统一到有序变量的极限定义limf(x) =a中 ,并在此基础上建立数学分析中统一的、严格的、更加宽泛的极限理论。  相似文献   

3.
党艳霞 《天中学刊》2001,16(5):103-103
极限 limx→ 0sin xx =1和 limx→∞ 1 1xx=e是微积分中的两个重要极限 .笔者在多年的教学过程中发现 ,学生对这两个重要极限的理解不深 ,在应用它们时经常出错 .本文结合有关例题 ,对这两个重要极限的本质特征进行讨论 ,提出了应用这两个重要极限的主要思路 .1  limx→ 0sin xx =1这个重要极限可推广为 limf( x )→ 0sin f (x)f (x) =1,它的特征是分子中的弧度数与分母 f (x)相同 ,并且都是无穷小量 (f (x)→0 ,当 x→ x0 或 x→∞时 ) .例 1 求 limx→ ∞ xsin 1x.解 :原式 =limx→ ∞sin 1x1x=1,其中当 x→ ∞时 1x→ 0 .考虑 limx…  相似文献   

4.
本文integral from n=a to +∞(f(x)dx)给出了在收敛的前提下,x→∞+limf(x)=0的若干充分条件。  相似文献   

5.
若极限嗽lim x→x0(x→∞)f(x)g1-型,lim x→x0(x→∞)f(x)=1,lim x→x0(x→∞)g(x)=∞,则极限的四则运算法则对它无效.现把求这种极限常见的几种方法列举如下. 1.用重要极限lim x→∞(1 1/x)x=e求极限 例1 求极限lim x→∞(x2 a2/x2-a2)x2.  相似文献   

6.
高等数学中,利用函数极限的定义验证极限式limf(x)=A,其过程需要有些技巧性,对于学生来说,是比较困难的.文中分析了文献[1]中一道例题的证明过程,通过总结升华,提出了对这一类问题的一种预处理方法——预先限制法.  相似文献   

7.
文[1]指出、所谓二元函数的极限乃是: “设函数f(P)在R~2上一点P=P_O的一个邻内有定义(但在P=P_O可以没有定义),A为一个定数。若对ε>0,Eε>0,使得当0<|P-P_0<δ时,有 |f(P)-A|<ε我们就说f(P)当P趋于P_0时以A为极限,记作limf(P)=A” 应该引起注意的是:如果limf(P)=A,那么当P以任何方式趋向P_0时,f(P)都必须趋向于A。倘若P以不同方式趋向P_0,f(P)有不同的极限或无极限,那么limf(P)不存在。文[1]特别强调,即使当点P沿过P_0的任何直线趋向P_0时,f(P)趋于同一极限,我们不能断定limf(P)存在。这既深刻地指出了二元函数极限定义的实质,也说明了求极限时的困难程度。  相似文献   

8.
问题1求下列函数的极限:(1)limx→1x3-1/x-1. 以上极限是当x趋近于某一定值x0时,分子、分母的极限均为0,这样的极限称为0/0型极限.解答如下:  相似文献   

9.
本文介绍函数的不连续点的类型及判别方法.1.函数y=f(x)在点x=x0处连续的定义定义如果函数y=f(x)在点x=x0处及其附近有定义,而且limf(x)=f(x0),那么函  相似文献   

10.
将重要极限limx→∞(1 1/x)^x=e(或limx→0(1 1/x)^x/1=e)推广为极限limx→x0[1 u(x)]^v(x)=e^k(其中limux→x0(x)=0,limvx→x0(x)=∞,limux→x0(x)v(x)=k)。可以解决一般的1^∞型极限的求法,当k为无穷大或不存在时也适用。因此,为求函函数的极限提供了一种简便有效的方法,具有很强的实用性.  相似文献   

11.
<正>分式问题是初中数学中的常见问题.本文解析一类典型问题,以期对教学有所帮助.一、分式值取值范围的界定例1当x取什么数值时,分式|x|-5/(x+3)(x-5)的值为零?解析由分式|x|-5=0,可得x=±5,但是x=5时,分母(x+3)(x-5)=0,所以只有当x=-5时,分母(x+3)(x-5)=20≠0,才能使分式有意义.  相似文献   

12.
数列极限中有著名的“两边夹”定理: 若an≤bn≤cn,且liman=limcn=A,则limbn=A. 由于数列是一种特殊的函数,上述定理可以移植到函数当中: 如果函数f(x)在区间D上满足g(x)≤f(x)≤h(x),且g(x)≤h(x)在区间D上恒成立.若存在x0∈D使g(x0)=h(x0)=A,则f(x0)=A. 不妨将这一命题称为函数中的“两边夹定理”,这个十分简明的结论,在高中数学中有着非常重要的作用,但在具体应用中要注意“恒”成立这一条  相似文献   

13.
由一元函数f(x)在点x0的极限存在,很容易地得出特殊二元函数F(x,y)=f(x)在点(x0,y0)的二重极限也存在。但若limx→x0f(x)=A,f(x)在x0有意义,且f(x0)≠A,则二重极限linx→x0,y→y0f(x)不存在。  相似文献   

14.
1.引例f(x)和g(x)是定义域为(-∞,0)∪(0,+∞)的可导奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'x)>0,且g(-3)=0,解不等式.f(x)g(x)<0.分析:f'(x)g(x)+f(x)g'(x)是函数h(x)=f(x)g(x)的导数,据此可知h(x)在(-∞,0)上单调递增.由题意,h(x)为奇函数.又g(-3)=0,  相似文献   

15.
在中学数学中,有一类形如二元函数f(x,y)满足条件g(x,y)≥0(或g(x,g)>0,或g(x,y)=0)的最值问题。求此类二元函数的最值时,如巧用解析几何知识,并借助图形的直观形象,就会得到令人满意的解答。它的一般步骤是: (1) 令f(x,y)=k; (2) 求k的取值范围,使区域g(x,y)≥0(g(x,y)>0)或图象g(x,y)=0与f(x,y)=k的图象有公共点; (3) 从这个范围内求f(x,y)=k的最大、最小值。下面举例说明: [例1] 设x~2 y~2≤4,试求3y-4x的最大值和最小值。  相似文献   

16.
幂指函数求极限   总被引:1,自引:0,他引:1  
在微积分的学习中,极限是认识和研究变量的重要工具和方法之一,而准确、熟练地计算极限是非常必要的。本文仅对经常遇到的幂指函数,即形如f(x)(f(x)>0,f(x)≠1的函数的极限求法,试举几例。命题1 若f(x)=a>0,且g(x)=b,则f(x)=a (或x→∞) 证 f(x)=e=e,故limf(x) =e=e=a命题2 若f(x)=1,且g(x)=∞,则f(x)=e (或x→∞) 证 f(x)=[1+(f(x)-1)] = u(x) u(x)→e>0,故limf(x)=e例1 求 解 cos=1,x2=+∞, 原式=e,而·x2 ==-,(利用v→0,1-cosv~) 原式=e使用上…  相似文献   

17.
导数的活用     
一、活用导数求极限【例1】求(1)li mx→0ex-1x(2)lix→m0sixnx解:(1)令f(x)=ex,则f′(x)=ex,f(0)=1∴li mx→0ex-1x=lix→m0f(x)x--0f(1)=f′(0)=1(2)li mx→0sinxx=lix→m0sinxx--0sin0=(sinx)′|x=0=1二、活用导数解决函数的单调性问题【例2】已知:函数f(x)=x2cosθ 2xsinθ  相似文献   

18.
在函数极限理论中,有如下的一个定理: 设f(x)在x_0的某空心邻域∪°(x_0)有定义,则极限lim(x→x_0)f(x)=A存在的充分必要条件是:对任何以x_0为极限,且含于∪°(x_0)的数列{xn},都有 lim(n→∞)f(x_n)=A  相似文献   

19.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

20.
lim from x to 0 (1 x)~(1/x)=e是高等数学中重要的极限公式之一,教材中这类1∞型极限的解题方法比较单一,为此我们拓宽了求解此类型极限的思路,对重要极限公式lim from x to 0 (1 x)~(1/x)=e进行了推广、论证,推广式的计算方法简便易行,具有较好的实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号