首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
题目:已知椭圆 X~2/24 y~2/16=1,直线l:X/12 y/8=1,P是l上一点,射线OP交椭圆于R,又点Q在OP上且满足|OQ|·|OP|=|OR|~2,当P点在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.  相似文献   

2.
题目:已知椭圆x~2/(24) y~2/(16)=1,直线l:x/(12) y/8=1,P是l上一点,射线OP交椭圆于点R,又点Q在OP上且满足|OQ|·|OP|=|OR|~2,当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线。  相似文献   

3.
先从一道试题谈起:已知椭圆x2/24+y2/16=1,直线l:x/12+y/8=1.P是l上一点,射线OP交椭圆于点R,又点Q在OP上且满足|OQ||OP|=|OR|2.当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.本题为1995年高考理科数学试题最后一题.除参考答案给出的两种解法外,一些数学杂志还刊  相似文献   

4.
95年全国高考理工第26题是一道好题,它不仅揭示几何性质深刻,而且能给我们以广泛地联想。笔者对它作了一些侧面透视并获得了一些新的成果。 为方便起见,现将原试题中的数量字母化,即得: 已知椭圆c:x~2/a~2 y~2/b~2=1和其外一定直线l:x/m y/n=1,P是l上一点,射线OP交椭圆c于R,Q是OP上的一点且满足|OQ|·|OP|=|OR|~2,当P在l上运动时,求Q的轨迹方程,并说明轨迹是什么曲线。  相似文献   

5.
综观历年高考解析几何试题,有六大热点.一、曲线轨迹方程的问题探求曲线的轨迹方程,即求曲线上动点坐标所满足的代数条件是解析几何的最基本问题,它在历年高考中频繁出现.全国高考85、86、91、93、94、95年均以这类问题为压轴题.此类问题通常是通过建立坐标系,设动点坐标,依据题设条件,列出等式,代入化简整理即得曲线的轨迹方程.基本方法有:直译法、定义法、代入法、交轨法、几何法、参数法、极坐标法等.例1 已知椭圆 x~2/24 y~2/16=1,直线l:x/12 y/8=1.P是 l 上一点,射线 OP 交椭圆于点 R,又点 Q 在 OP 上且满足|OQ|·|OP|=|OR|~2,当点 P 在 l 上移动时,求点 Q 的轨迹方程,并说明轨迹是什么曲线.(1995年  相似文献   

6.
为说明标题中的问题,让我们先从一道熟知的试题谈起。 例1 已知椭圆x~2/(24) y~2/(16)=1,直线L:x/(12) y/8=1,P是L上一点,射线OP交椭圆于点R,又点Q在OP上且满足|OQ|.|OP|=|OR|~2.当点P在L上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线。(1995年全国高考题)  相似文献   

7.
<正>在高三第二轮复习中,笔者选择了1995年全国卷数学(理)压轴题,让学生对其解法进行探究,目的使学生对求曲线的轨迹问题得到进一步复习、深化和掌握,达到预期的教学目标.现介绍如下.题目已知椭圆x2/24+y2/16=1,直线l:x/12+y/8=1,P是l上一点,射线OP交椭圆于点R,又点Q在OP上,且满足OQ·OP=OR2.当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.  相似文献   

8.
《数学通报》88—2《高中数学复习探讨》一文P33例4: 已知椭圆方程x~2/4+y~2=1,过P(4,-2)作一直线l交椭圆于M、N两点,又Q点在直线l上,并且满足2/|PQ|=1/|PM|+1/|PN|。求Q点的轨迹方程。解:设过P点的直线方程为 {x =4+tcosθ y=-2+tsinθ(t为参数)代入椭圆方程得(cos~2θ+4sin~2θ)t~2+(8cosθ-16sinθ)t+28=0由2/|t|=1/t_1+1/t_2得Q点轨迹方程为:  相似文献   

9.
从椭圆、双曲线的中心O作两条互相垂直的半径OP、OQ,我们称∠POQ为有心二次曲线的直心角.本文探讨它的性质及其应用. 命题1 若直线l:Ax+By=1与椭圆x2/a2十y2/b2=1(a>b>0)交于P、Q两点,且OP⊥OQ(O为坐标原点),则(1)1/|OP|2+1/|OQ|2=1/a2+1/b2=A2+B2;(2)|PQ|=  相似文献   

10.
92年上海市有这样一道高考题: 设动直线l垂直于x轴,且与椭圆x~2/4 y~2/2=1交于A、B两点,P是l上满足|PA|·|PB|=1的点,求点P的轨迹方程,并说明轨迹是什么图形? 解:如图1,设点P(x,y),点A(x_1,y_1),则B(x,-y_1)。由于A、B两点在椭圆上,所以又由1-x~2/4=y_1~2/2等,得-2相似文献   

11.
命题 :设点 P(x0 ,y0 ) ,⊙ O:x2 + y2 =r2 ,直线 l:x0 x + y0 y =r2则 1当点 P在圆上时 ,直线 l与⊙ O相切 ;2当点 P在圆外时 ,直线 l与⊙ O相交 ;3当点 P在圆内时 ,直线 l与⊙ O相离 .1 证明在直线 l上任取一点 Q(x,y) ,因为向量 OP =(x0 ,y0 ) ,OQ =(x,y)所以 OP .OQ =x0 x + y0 y =r2即 | OP| .| OQ| .cos∠ POQ =r2因为 l的一个方向向量 v=(-y0 ,x0 )所以 v.OP =0 OP⊥ l故圆心 O到 l的距离d =| OQ| .cos∠ POQ =r2| OP|| OP| >r时 ,d r;故命题为真 .2 画法已知点 P和⊙ …  相似文献   

12.
1995年高考压轴题提供了反演变换的一种推广,即将通常的反演变换中的基圆(半径为r)推广到椭圆(称为“反演椭圆”),且当P、Q为反演点时,反演幂由k=OP·PQ=r~2推广到|OP|·|OQ|=|OR|~2(R为P、Q联线与椭圆的交点),称这种变换为“椭圆反演”(简称“反演”)。下面介绍这种“反演”的一些规律,供大家参考。 设椭圆b~2x~2 a~2y~2=a~2b~2中心O为“反演”中心,射线OP与椭圆交于点R,设P关于椭圆的“反演”点为Q,且P、Q、R的坐标分别为(x_P,y_P),(x,y),(x_R,y_R),∠POx=o,则|OP|·|OQ|=|OR|~2且  相似文献   

13.
错在哪里     
已知椭圆3/7x~2 y~2=1及点P(1,0),过 P 的直线l 交 y 轴于 Q 点,交椭圆于 A、B 两点,设 AP 在线段 BQ上,且|AQ|=|BP|,求 l 的方程.这道题是九七年成人高考理科试卷第26题,以下给出几种典型错误解法,你能指出它们错在哪里并加以订正么?  相似文献   

14.
圆锥曲线综合题是高考常考题型.这些题目的解法灵活多变,其中涉及圆锥曲线交点问题,可借用交点坐标作为参数,从而列式求解(称之为点坐标法).下面通过几例来分析这种方法的应用特点.例1 P,Q是椭圆x2 4y2=16上的两个动点, O为原点,直线OP,OQ的斜率之积为-1/4,求|OP|2 |OQ|2的值.  相似文献   

15.
(2020年北京卷第20题)已知椭圆C:x^2/a^2+y^2/b^2=1过点A(-2,-1),且a=2b.(Ⅰ)求椭圆C的方程;(Ⅱ)过点B(-4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q,求|PB|/|BQ|的值.  相似文献   

16.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

17.
2004年全国高考文(理)解几试题是:设椭圆x2/m 1 y2=1的两个焦点是F1(-c,0)与F2(c,0),(c>0),且椭圆上存在点P,使直线PF1与直线PF2垂直,(1)求实数m的取值范围;(2)设l是相应于焦点F2的准线,直线PF2与l相交于点Q,若|OF2|/|PF2|=2-3~(1/2),求直线PF2的方程.本题解法较多,这里仅给出其中一种解法.解(1)∵PFl1⊥PF2,∴点P在以线段F1F2的圆上,且半径为c=m~(1/2),又点P在已知椭圆上,椭圆的短半轴长为b=  相似文献   

18.
这次练习课,我编选了下面的题组:1.过椭圆 x~2/64 y~2/36=1上一定点P(-8,0),作直线交椭圆于 Q 点,求线段PQ 的中点的轨迹方程;2.求椭圆 x~2/4 y~2=1的斜率为1的弦的中点轨迹方程;3.在椭圆 x~2/16 y~2/4=1中,求经过点  相似文献   

19.
性质 椭圆的中心到对中心张直角的弦的距离为一定值 .具体对椭圆 x2a2 y2b2 =1来说 ,直线 PQ交椭圆于 P,Q两点 ,且 OP⊥ OQ,O到 PQ的距离为 d,则 d2 =a2 b2a2 b2 .证明 设 OP:y=kx,将它代入椭圆方程 x2a2 y2b2 =1 ,得( b2 a2 k2 ) x2 =a2 b2 ,∴ x2 =a2 b2b2 a2 k2 .| OP| 2 =x2 y2 =( 1 k2 ) x2 =a2 b2 ( 1 k2 )b2 a2 k2 .用 - 1k代 k得 | OQ| 2 =a2 b2 ( 1 k2 )b2 k2 a2 ,∴ 1| OP| 2 1| OQ| 2=b2 a2 k2a2 b2 ( 1 k2 ) b2 k2 a2a2 b2 ( 1 k2 ) =a2 b2a2 b2 .而 d=| OP|× | OQ|| PQ| ,…  相似文献   

20.
准备一张纸片(如图1).(其中O点表示圆心,F点表示圆内除O点以外的任意一点.)将圆纸片翻折,使翻折上去的圆弧通过F点(图2),将折痕用笔画上颜色.继续上述过程,绕圆心一周.观察一下得到了什么图形?想一想为什么?直线围成一个椭圆(如图3).这样绕圆心O简单地一折,为什么会产生椭圆呢?如图4.设折痕为l,那么F点关于直线l的对称点Q一定在圆弧上.连接OQ,交l于P点,连结PF,则OP+PF=OP+PQ=半径长(定值),所以P点的轨迹是椭圆.根据对称性,找到了折痕上一点满足到两定点的距离和等于定长,从而满足椭圆定义,得出结论.在这个问题中,怎么知道椭圆上的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号