首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper studies the finite-time guaranteed cost control problem for switched nonlinear stochastic systems with parameter uncertainties and time-varying delays. By choosing a model-dependent and delay-dependent Lyapunov-Krasovskii functional, applying the average dwell time approach and the Gronwall inequality, some novel sufficient conditions are derived to ensure that the switched nonlinear stochastic closed-loop system is finite-time stochastically stable and an upper bound is given on the performance index. The obtained nonlinear matrix is transformed into a linear matrix form, and then the feedback controller gains of the switched nonlinear stochastic systems with time-varying delay are obtained. Finally, two simulation examples are designed to verify the effectiveness of the suggested approach.  相似文献   

2.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

3.
This paper focuses on the problem of robust H∞ filter design for uncertain systems with time-varying state and distributed delays. System uncertainties are considered as norm-bounded time-varying parametric uncertainties. The delays are assumed to be time-varying delays being differentiable uniformly bounded with delay-derivative bounded by a constant, which may be greater than one. A new delay-derivative-dependent approach of filter design for the systems is proposed. A novel Lyapunov-Krasovskii functional (LKF) is employed, and a tighter upper bound of its derivative is obtained by employing an inequality and using free-weighting matrices technique, then the proposed result has advantages over some existing results, in that it has less conservatism and it enlarges the application scope. An improved sufficient condition for the existence of such a filter is established in terms of linear matrix inequality (LMI). Finally, illustrative examples are given to show the effectiveness and reduced conservatism of the proposed method.  相似文献   

4.
This paper investigates consensus problem for heterogeneous discrete linear time-invariant (LTI) multi-agent systems subjected to time-varying network communication delays and switching topology. A new two-stage consensus protocol is proposed based on stochastic, indecomposable and aperiodic (SIA) matrix and pseudo predictive scheme. With pseudo predictive scheme the network delay is compromised. Consensus analysis based on seminorm is provided. Results give conditions for such systems with periodic switching topology and time-varying delays to reach consensus. Highlights of the paper include: the protocol can be implemented in a distributed manner; the pseudo predictive approach requires less computation and communication; the verification of consensus convergence does not require the global information about the communication topology; the protocol allows delay to be time-varying, topology to dynamically and asymmetrically switch and system mode to be unstable. Numerical and practical examples demonstrate the effectiveness of the theoretical results.  相似文献   

5.
This paper addresses the problem of exponential synchronization of switched genetic oscillators with time-varying delays. Switching parameters and three types of nonidentical time-varying delays, that is, the self-delay, the intercellular coupling delay, and the regulatory delay are taken into consideration in genetic oscillators. By utilizing the Kronecker product techniques and ‘delay-partition’ approach, a new Lyapunov–Krasovskii functional is proposed. Then, based on the average dwell time approach, Jensen?s integral inequality, and free-weighting matrix method, delay-dependent sufficient conditions are derived in terms of linear matrix inequalities (LMIs). These conditions guarantee the exponential synchronization of switched genetic oscillators with time-varying delays whose upper bounds of derivatives are known and unknown, respectively. A numerical example is presented to demonstrate the effectiveness of our results.  相似文献   

6.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

7.
This paper deals with the problem of a new delay-dependent robust stability criteria for a class of mixed neutral and Lur’e systems. The system has time-varying uncertainties, interval time-varying delays and sector-bounded nonlinearity. The proposed method is based on Lyapunov method, a delay-dependent criterion for asymptotic stability is established in terms of linear matrix inequality (LMI). Numerical examples show the effectiveness of the proposed method.  相似文献   

8.
This paper presents new exponential stability and stabilization conditions for a class of uncertain linear time-delay systems. The unknown norm-bounded uncertainties and the delays are time-varying. Based on an improved Lyapunov-Krasovskii functional combined with Leibniz-Newton formula, the robust stability conditions are derived in terms of linear matrix inequalities (LMIs), which allows to compute simultaneously the two bounds that characterize the exponential stability rate of the solution. The result can be extended to uncertain systems with time-varying multiple delays. The effectiveness of the two stability bounds and the reduced conservatism of the conditions are shown by numerical examples.  相似文献   

9.
This paper discusses the problems of delay-dependent stability and stabilization of neutral saturating actuator systems with constant or time-varying delays. The problems of stabilization for neutral saturating actuator system with time-varying delay and parameter from the presented results, the condition obtained here does not need derivative information of the delay time and thus can be used to analyze the stabilization problem for a class of saturating actuator systems with time-varying delay, which is bounded but arbitrarily fast time-varying. Using the model transformation and quasi-convex optimization problem, we derive delay-dependent conditions for the stability of systems in terms of the linear matrix inequality. The stabilization conditions are formulated as linear matrix inequalities (LMIs) which can be solved by convex optimization algorithm. Moreover, the stability criteria are extended to design a stabilizing state feedback controller. Numerical examples show that the results obtained in this paper significantly improve the estimate of stability limit over some existing results reported previously in the literature.  相似文献   

10.
In this paper, we first deal with the robust stability of uncertain linear stochastic differential delay systems. The parameter uncertainties are time-varying and unknown but are norm-bounded via two types of uncertainties, and the delays are time invariant. We then extend the proposed theory to discuss the robust stabilization of uncertain stochastic differential delay systems. These results are given in terms of linear matrix inequalities. Two examples are presented to illustrate the effectiveness.  相似文献   

11.
In this paper, we study the synchronization problem of a class of chaotic neural networks with time-varying delays and unbounded distributed delays under stochastic perturbations. By using Lyapunov-Krasovskii functional, drive-response concept, output coupling with delay feedback and linear matrix inequality (LMI) approach, we obtain some sufficient conditions in terms of LMIs ensuring the exponential synchronization of the addressed neural networks. The feedback controllers can be easily obtained by solving the derived LMIs. Moreover, the main results are generalizations of some recent results reported in the literature. A numerical example is also provided to demonstrate the effectiveness and applicability of the obtained results.  相似文献   

12.
This paper considers existence, uniqueness and the global asymptotic stability of fuzzy cellular neural networks with mixed delays. The mixed delays include constant delay in the leakage term (i.e., “leakage delay”), time-varying delays and continuously distributed delays. Based on the Lyapunov method and the linear matrix inequality (LMI) approach, some sufficient conditions ensuring global asymptotic stability of the equilibrium point are derived, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox. In addition, two numerical examples are given to illustrate the feasibility of the result.  相似文献   

13.
This study is concerned with the problem of reachable set estimation for linear systems with time-varying delays and polytopic parameter uncertainties. Our target is to find an ellipsoid that contains the state trajectory of linear system as small as possible. Specifically, first, in order to utilize more information about the state variables, the RSE problem for time-delay systems is solved based on an augmented Lyapunov-Krasovskii functional. Second, by dividing the time-varying delay into two non-uniformly subintervals, more general delay-dependent stability criteria for the existence of a desired ellipsoid are derived. Third, the integral interval is decomposed in the same way to estimate the bounds of integral terms more exactly. Fourth, an optimized integral inequality is used to deal with the integral terms, which is based on distinguished Wirtinger integral inequality and Reciprocally convex combination inequality. This can be regard as a new method in the delay systems. Finally, three numerical examples are presented to demonstrate the effectiveness and merits of the theoretical results.  相似文献   

14.
In this paper, the global robust exponential stability problem for a class of uncertain inertial-type BAM neural networks with both time-varying delays is focused through Lagrange sense. The existence of time-varying delays in discrete and distributed terms is explored with the availability of lower and upper bounds of time-varying delays. Firstly, we transform the proposed inertial BAM neural networks to usual one. Secondly, by the aid of LKF, stability theory, integral inequality, some novel sufficient conditions for the global robust exponential stability of the addressed neural networks are obtained in terms of linear matrix inequalities, which can be easily tested in practice by utilizing LMI control toolbox in MATLAB software. Furthermore, many comparisons of proposed work are listed with some existing literatures to get less conservatism. Finally, two numerical examples are provided to demonstrate the advantages and superiority of our theoretical outcomes.  相似文献   

15.
This paper is devoted to investigating the robust stochastic exponential stability for reaction-diffusion Cohen–Grossberg neural networks (RDCGNNs) with Markovian jumping parameters and mixed delays. The parameter uncertainties are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Some criteria for delay-dependent robust exponential stability of RDCGNNs with Markovian jumping parameters are established in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing Matlab LMI toolbox. Numerical examples are provided to demonstrate the efficiency of the proposed results.  相似文献   

16.
《Journal of The Franklin Institute》2023,360(14):10517-10535
Variable fractional-order (VFO) differential equations are a beneficial tool for describing the nonlinear behavior of complex dynamical phenomena. In comparison with the constant FO derivatives, it describes the memory properties of such systems that can vary in the time domain and spatial location. This article investigates the stability and stabilization of VFO neutral systems in the presence of time-varying structured uncertainties and time-varying delay. FO Lyapunov theorem is adopted to achieve order-dependent and delay-dependent criteria for both nominal and uncertain VFO neutral delay systems. The obtained conditions are given in respect of linear matrix inequality by designing a delayed state feedback controller. Simulations verify the main results.  相似文献   

17.
In this paper, the problem of robust H filtering for uncertain systems with time-varying distributed delays is considered. The uncertainties under discussion are time varying but norm bounded. Based on the Lyapunov stability theory, sufficient condition for the existence of full order H filters is proposed by linear matrix inequality (LMI) approach such that the filtering error system is asymptotically sable and satisfies a prescribed attenuation level of noise. A numerical example is given to demonstrate the availability of the proposed method.  相似文献   

18.
This paper is concerned with the stability analysis problem for a class of delayed stochastic recurrent neural networks with both discrete and distributed time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to ensure the global, robust asymptotic stability for the addressed system in the mean square. The conditions obtained here are expressed in terms of LMIs whose feasibility can be checked easily by MATLAB LMI Control toolbox. In addition, two numerical examples with comparative results are given to justify the obtained stability results.  相似文献   

19.
This paper addresses the problem of global exponential dissipativity for a class of uncertain discrete-time BAM stochastic neural networks with time-varying delays, Markovian jumping and impulses. By constructing a proper Lyapunov–Krasovskii functional and combining with linear matrix inequality (LMI) technique, several sufficient conditions are derived for verifying the global exponential dissipativity in the mean square of such stochastic discrete-time BAM neural networks. The derived conditions are established in terms of linear matrix inequalities, which can be easily solved by some available software packages. One important feature presented in our paper is that without employing model transformation and free-weighting matrices our obtained result leads to less conservatism. Additionally, three numerical examples with simulation results are provided to show the effectiveness and usefulness of the obtained result.  相似文献   

20.
This paper is concerned with the problem of robust synchronization of a class of complex dynamical networks with time-varying delays and reaction–diffusion terms. To reflect most of the dynamical behaviors of the system, the parameter uncertainties are considered. A sampled-data controller with m stochastically varying sampling periods whose occurrence probabilities are given constants is considered. The control objective is that the trajectories of the system by designing suitable control schemes track the trajectories of the system with sample-data control. It is shown that, through Lyapunov stability theory, the proposed sample-data controllers are successful in ensuring the achievement of robust synchronization of complex dynamical networks even in the case of uncertainity and Markovian jumping parameters. By utilizing the Lyapunov functional method, Jensen’s inequality, Wirtinger’s inequality and lower bounds theorem, we establish a sufficient criterion such that, for all admissible parameter uncertainties, the complex dynamical network is robustly synchronized. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号