首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
定比分点的向量式:图1如图1,一般地,若P是分线段P1P2成定比λ的分点(即P1P=λPP2,λ≠-1)则OP=1 1λOP1 1 λλOP2.证明:设O为平面上任意一点,若P1P=λPP2.则OP-OP1=λ(OP2-OP)=λOP2-λOP∴(1 λ)OP=OP1 λOP2即OP=1 1λOP1 1 λλOP2.特别地,当λ=1时,点P是线段P1P2的中点,则OP=21(OP1 OP2)称为线段P1P2中点P的向量表达式.变式:一般地,若P、P1、P2三点共线,且P1P=nmPP2,O为任意一点,则OP=nOP1m mnOP2图2应用例析:一、探求点的坐标【例1】如图2,△ABC顶点A(1,1),B(-2,10),C(3,7),∠BAC平分线交BC边于D,求…  相似文献   

2.
线段的定比分点公式是同学们所熟悉的重要公式,它在中学数学中有较为广泛的应用,近几年的高考也时有涉及,如2000年全国高考文理科倒数第一大题都直接考查了定比分点公式的运用.同学们所熟悉的是定比分点的坐标公式,其实,除此以外,定比分点公式还有其向量形式.运用定比分点的向量形式解题有时显得更为简洁明快.一、线段的定比分点向量公式设P1、P2是直线l上的两点,点P是l上不同于P1、P2的任意一点,O是平面内任意一点,设OP1=a,OP2=b,P分有向线段P1P2所成的比为λ,则有OP=a1++λλb.证明:如图1,因为P1P=OP-a,.PP2=b-OP,P1P=λPP2,所…  相似文献   

3.
三、定比分点向量公式的潜在作用由P1、P2、P3三点共线(P1P=λPP2)可得定比分点向量公式OP=OP1 λOP21 λ.反过来,如果OP=OP1 λOP21 λ,则可证三点P1、P、P2共线.事实上,由OP=OP1 λOP21 λ得(1 λ)OP=OP1 λOP2,OP-OP1=λ(OP2-OP)即P1P=λPP2所以三点P1、P、P2共线从而有三点  相似文献   

4.
定理:已知直线AB上一点P,(AP|→)=λ(PB|→),O为平面上任一点,求证(OP|→)=((OA|→) λ(OB|→))/1 λ.证明:由(AP|→)=λ(PB|→)得(OP|→)-(OA|→)=λ((OB|→) (OP|→)),化简即得(OP|→)=((OA|→) λ(OB|→))/1 λ.该定理就是定比分点的向量式表示,在数学解题中,有时比定比分点的坐标式更简捷方便,本文试举例加以说明.  相似文献   

5.
如图1,设P.(x1,y1)、P2(x2,y2)是直线l上的两点,点P是l上不同于P1、P2的任一点,则存在一个实数λ,使P1P=λPP2,λ叫做点P分有向线段P1P2所成的比,则OP=(OP1+λOP2)/(1+λ),我们把它称为定比分点向量公式.  相似文献   

6.
1 定比分点向量公式 如图1,设P1(x1,y1)、P2(x2,y2)是直线l上的两点,点P是l上不同于P1、P2的任一点,则存在一个实数λ,  相似文献   

7.
有向线段的定比分点公式有两种形式,一种是教科书中介绍的坐标式,即设p1(x1,y1),p2(x2,y2)且点P分p1p2所成的比为λ(λ≠-1),则{xp=x1 λx2/1 λ yp=y1 λy2/1 λ;另一种是向量式,教科书没有提到,即设点P分p1p2所成的比为λ,O为其平面内任一点,  相似文献   

8.
对有向线段的定比分点坐标公式及其应用大家都很熟悉 ,而对该公式的向量形式及由此衍生出的系列性质和应用的认识则要逊色得多 .本文试对此作一探索 ,以期抛砖引玉 ,使对定比分点公式的理解更趋完善 .定理 1 设P1 、P2是直线l上的两点 ,点P是l上不同于P1 、P2 的任一点 ,且P1 P=λPP2 ,O是此平面内任一点 ,则    OP =OP1 +λOP21 +λ .上式称之为线段定比分点公式的向量形式 .证明 OP=OP1 + P1 P ,①OP =OP2 + P2 P ,②① +② ·λ ,得(1 +λ) OP =OP1 +λOP2 ,∴OP =OP1 +λOP21 +λ .当…  相似文献   

9.
定比分点公式除可以用来求点坐标、证n点共线外,还有其它用途. 1.求值域例1 求函数y=1-x2/1 x2的值域.解 设x2=λ,则 y=1 λ(-1)/1 λ,即 y分1,-1所得的比为λ.又 λ≥0,所以 y∈(-1,1]. 2.比较大小 例2 已知f(x)=ax2 bx c(a≠0),  相似文献   

10.
“设P1,P2是直线l上的2个点,点P是l上不同于点P1,P2的任意一点,则存在一个实数λ,使得P1P→=λPP2→,λ叫做点P分有向线段P1P2→所成的比”这是高中数学教材第一册(下)给线段定比分点所下的定义.笔者发现,只要对定义中的等式P1P→=λPP2→稍加变形,即可得到一个与线段定比分点坐标公式极为相似的向量形式结论.下面以定理的形式给出这一结论,并对其进行空间拓广.  相似文献   

11.
设点P1(x1,y1)、P2(x2,y2)和P(x,y),若P1P=λPP2(λ≠-1)则有x=x1 λx21 λ,y=y1 λy21 λ.显然点P在P1、P2的连线上,且当λ>0时,P在P1、P2之间;当λ<0时,P在线段P1P2外;当λ=0时,P与P1重合.上述结果就是定比分点公式之内容.众所周知,定比分点公式是解析几何中最基本的公式之一,其关键是λ的确定.由此出发,我们若能恰当地设置λ,不仅能使问题化难为易,而且能体味其解法的简洁美.下面举例说明定比分点公式的若干应用.1 求解函数的值域例1 求函数y=1 3x 11-x 1的值域.解 令λ=-x 1,则λ≤0,依题意有y=1 (-3)λ1 λ,这样λ就是点P(y…  相似文献   

12.
有向线段P1P2^-的定比分点坐标公式为x=x1 λx2/1 λ,y=y1 λ2/1 λ(*)它是一个结构整齐、对称,富于数学美的公式。  相似文献   

13.
在学习解析几何时,常常会遇到直线与线段相交时求参数范围的问题,这里先介绍一个简单结论,从而简捷地解决此类问题.定理 若直线l:Ax By C=0(A2 B2≠0)与P1(x1,y1),P2(x2,y2)为端点的线段相交,则(Ax1 By1 C)(Ax2 By2 C)≤0.证 设直线l与线段P1P2相交于点P(x,y),不妨设P不重合于P2,点P内分线段P1P2—的比为λ,则λ≥0,由定比分点坐标公式,得x=x1 λx21 λ, y=y1 λy21 λ.∵ 点P(x,y)在直线l上,∴ A·x1 λx21 λ B·y1 λy21 λ C=0,整理,得 Ax1 By1 C=-λ(Ax2 By2 C).…  相似文献   

14.
在高中数学中.线段的定比分点坐标公式{x=9x1 λx2)/(1 λ) y=(y1 λy2)/(1 λ)我们都很熟悉,而且在解有关问题时,我们也已习惯去用它.其实,这只是定比分点公式的表现形式之一,而它的另一表现形式——向量公式,恐怕我们大部分朋友较淡漠,这就是:  相似文献   

15.
1 知识探究 1) 线段的定比分点 设P1与P2是直线l上的两点,点P为直线l上不同于P1、P2的任意一点,若存在一个实数λ,使得→P1P=λ→PP2,则λ叫做P分有向线段→P1P2所成的比,P点叫做有向线段→P1P2的定比分点.  相似文献   

16.
设A(x1,y1) ,B(x2 ,y2 ) ,点P(x ,y)分有向线段AB所成的比APPB=λ(λ≠ - 1 ) ,则有 :x =x1+λx21 +λ ,y =y1+λy21 +λ .且当P为内分点时 ,λ >0 ;当P为外分点时 ,λ <0 (λ≠- 1 ) .当P与A重合时 ,λ =0 ;当P与B重合时 ,λ不存在 ,这就是定比分点坐标公式 .应用定比分点坐标公式 ,能使许多问题化难为易 ,化繁为简 ,有着非凡的功效 .1 比较大小例 1 已知a >0 ,b >0 ,0 0 ,则 1 -x =1 - λ1 +λ=11 +λ.于是 a2x+ b21 -…  相似文献   

17.
在定比分点公式中,若能从定比分点P的坐标(x,y)随定比λ变化而变化这一事实出发,将它看成是过P_1(x_1,y_1)和P_2(x_2,y_2)两点的直线的参数方程(λ是参数)。那么,直线P_1P_2上任一点的坐标就可用λ的不同取值来确定,根据这一思考,当我们把形如的函数最小值(取“ ”时),最大值(取“-”时)问题,也设法转化为距离问题之后,如果再用定比分点公式求解,不仅可以大大简化运算过程,直接求出函数的最值时刻和相应最大、小值,而且还可以培养学生的  相似文献   

18.
解几中的定比分点坐标公式的特殊情况:P_1,P_2是数轴上两点,其坐标分别为x_1,x_2,若数轴上点p分线段p_1P_2之比/=λ,则点p的坐标x=(x_1 λx_2)/(1 λ),其中当且仅当P为P_1P_2的内分点时λ>0。不妨  相似文献   

19.
由空间向量基本定理的推论知[见高中数学教材(人教版)第二册(下)P31页]:若O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组λ1、λ2、λ3,使→OP=λ1 →OA λ2 →OB λ3 →OC.  相似文献   

20.
众所周知 ,平面向量基本定理可从两个层面上理解 :( 1 )从代数式的角度 ,向量a和两个向量e1,e2 共面的充要条件是a =λ1e1 λ2 e2 ,λ1,λ2 ∈R ;( 2 )从平面几何角度 ,任一向量可在平面内进行任意的分解、组合 .但是 ,笔者认为 ,在完成了向量坐标形式及运算的教学后 ,应该进行如下反思 :1 探究平面向量基本定理的解析本质当然 ,如果我们仅就向量的坐标形式而言 ,该定理仍在上述思考的范畴 .试想 ,任一向量都可视为有向线段 ,那么我们不妨设有向线段P0 P所在的直线为l,方向向量a ,根据平面基本定理a=λ1e1 λ2 e2 ,λ1,λ2 ∈R .设e1=( -…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号