首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Science & Education - This multiple-case study examined the rationales and instructional strategies for teaching history of science (HOS) of 16 instructors of a history of science course for...  相似文献   

3.
In this study, a Beliefs About Teaching (BAT) scale was created to examine preservice elementary science teachers’ self-reported comfort level with both traditional and reform-based teaching methods, assessment techniques, classroom management techniques, and science content. Participants included 166 preservice teachers from three different US universities. Analyses revealed significant correlations among participants’ confidence level with assessment techniques, classroom management, teaching methods, and science content and number of science methods and science content courses taken. A significant difference was observed among the students enrolled at each university. Overall, study participants felt more comfortable teaching biology concepts than teaching chemistry concepts, physics concepts, or both.  相似文献   

4.
International Journal of Science and Mathematics Education - The aim of this paper is to discuss preservice mathematics teachers’ in-the-moment noticing of mathematical opportunities and how...  相似文献   

5.
This study investigated preservice elementary science teachers’ (PSTs) informal reasoning regarding socioscientific issues (SSI), their epistemological beliefs, and the relationship between informal reasoning and epistemological beliefs. From several SSIs, nuclear power usage was selected for this study. A total of 647 Turkish PSTs enrolled in three large universities in Turkey completed the open-ended questionnaire, which assessed the participants’ informal reasoning about the target SSI, and Schommer’s (1990) Epistemological Questionnaire. The participants’ epistemological beliefs were assessed quantitatively and their informal reasoning was assessed both qualitatively and quantitatively. The findings revealed that PSTs preferred to generate evidence-based arguments rather than intuitive-based arguments; however, they failed to generate quality evidence and present different types of evidence to support their claims. Furthermore, among the reasoning quality indicators, PSTs mostly generated supportive argument construction. Regarding the use of reasoning modes, types of risk arguments and political-oriented arguments emerged as the new reasoning modes. The study demonstrated that the PSTs had different epistemological beliefs in terms of innate ability, omniscient authority, certain knowledge, and quick learning. Correlational analyses revealed that there was a strong negative correlation between the PSTs’ certain knowledge and counterargument construction, and there were negative correlations between the PSTs’ innate ability, certain knowledge, and quick learning dimensions of epistemological beliefs and their total argument construction. This study has implications for both science teacher education and the practice of science education. For example, PST teacher education programs should give sufficient importance to training teachers that are skillful and knowledgeable regarding SSIs. To achieve this, specific SSI-related courses should form part of science teacher education programs.  相似文献   

6.
In this article, we investigate the relationship between preservice teachers’ inquiry experience and their capacity to reflect on the challenges involved in implementing inquiry into classrooms. For data, we draw on the personal narratives of preservice science teachers enrolled in science instruction courses. Preservice teachers with extensive inquiry experiences perceive implementation challenges principally in terms of teaching and student learning. This contrasts with the perceptions of preservice teachers with limited inquiry experience for whom the main concerns relate to the negative perceptions of others, time, the curriculum, and materials. By identifying these perceptions, it may be possible to develop courses that assist limited and moderate-experience preservice teachers’ move toward the perceptions of their more inquiry experienced colleagues.  相似文献   

7.
This study explores five minority preservice teachers’ conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream White peers served as the framework to identify minority preservice teachers’ instructional ideas, meanings, and actions for teaching science. Data included drawings, narratives, observations and self-review reports of microteaching, and interviews. A thematic analysis of data revealed that the minority preservice teachers’ conceptions of teaching science were a specific set of beliefs-driven instructional ideas about how science content is linked to home experiences, students’ ideas, hands-on activities, about how science teaching must include group work and not be based solely on textbooks, and about how learning science involves the concept of all students can learn science, and acknowledging and respecting students’ ideas about science. Implications for teacher educators include the need to establish supportive environments within methods courses for minority preservice teachers to express their K-12 experiences and acknowledge and examine how these experiences shape their conceptions of teaching science, and to recognize that minority preservice teachers’ conceptions of teaching science reveal the multiple ways through which they see and envision science instruction.  相似文献   

8.
This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary science courses completed, and prior school science experiences had a significant main effect on personal science teaching efficacy (PSTE) but not science teaching outcome expectancy (STOE). There was no evidence for significant interaction effects between variables on both efficacy subscales. The implications of this study relate to organization, structure, and dynamics of elementary science teacher preparation.  相似文献   

9.
The new Science and Technology Curriculum Framework recently issued in Taiwan advocates the teaching of integrated science and technology with greater emphasis on basic skills. Science teachers are not used to teach in this way, they need different abilities and skills in order to do so. Using various effective professional development strategies, including a collaborative action research approach, the aim of this study was to help science teachers develop professionally through the development of instructional modules on integrated science and technology. A research team was formed consisting of science educators/researchers, graduate assistants and science teachers from six junior high schools in the central area of Taiwan. In order to involve teachers collaboratively over an extended period of time, the entire study went through preparatory, elaborative and disseminative stages for three consecutive years. Various professional development opportunities were built-in. The instructional modules developed were discussed by participants of this study and evaluated by external experts before they were tried out in actual classroom settings. Both qualitative and quantitative methods, including field notes, interviews, observations, video-taping, audio-taping, document analysis, and surveys of students and teachers opinions were used to collect data for a closer examination of the effectiveness of the instructional modules and of the increase in teachers instructional proficiencies. Overall, teachers interdisciplinary experiences and knowledge increased. They were more flexible and resourceful in using instructional strategies that best fit the instructional settings. Their knowledge and skills in using information and communication technologies in science classrooms also increased considerably.  相似文献   

10.
The purpose of the study is to explore Turkish preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. The researchers engaged 39 preservice science teachers in informal reasoning interview and moral decision-making interview protocols. Of the seven socioscientific issues, three issues were related to gene therapy, another three were related to human cloning, and one was related to global warming. The data were analyzed using an interpretive qualitative research approach. The characteristic of informal reasoning was determined as multidimensional, and the patterns of informal reasoning emerged as rationalistic, emotive, and intuitive reasoning. The factors influencing informal reasoning were: personal experiences, social considerations, moral-ethical considerations, and technological concerns.  相似文献   

11.
The research reported in this study examines the very first time the participants planned for and enacted science instruction within a “best-case scenario” teacher preparation program. Evidence from this study indicates that, within this context, preservice teachers are capable of implementing several of the discursive practices of science called for in standards documents including engaging students in science investigations and constructing evidence-based explanations. The participants designed experiences that allowed their students to interact with natural phenomena, gather evidence, and craft explanations of natural phenomenon. The study contends that the participants were able to achieve such successes due to their participation in a teacher education program and field placement, which were designed using a comprehensive, conceptual framework. Video of the participant’s teaching and annotated self-analysis videos served as the primary data for this study. Implications for future research and elementary science teacher education are discussed.  相似文献   

12.
The 39 preservice teachers (PSTs) who participated in this study were enrolled in a masters program for secondary science teacher certification. Initially they held broad ideas about teaching and learning gleaned from their own experiences. Guided by the program course work, some PSTs embraced the pedagogical approaches introduced in the program, applied them in their teaching, and reflected on the outcomes. Their reflections showed that they were focused on keeping all of their students interested in science and on student participation in the process of meaning-making. Some PSTs embraced the program goals but struggled to achieve them in teaching. Others focused on transmission of content and did not attempt to develop an environment of student agency. There were nine career-changer PSTs and most of them remained teacher-centered throughout the program. The implications of student- and teacher-centered approaches adopted by the PSTs and the rationales provided by them are discussed in the paper.  相似文献   

13.
14.
This study was designed to examine benefits and challenges of teaching through videoconferencing in the context of students’ field placement experiences, particularly as it relates to an inquiry-based approach to teaching and learning math and science. In the context of mathematics and science methods courses, preservice teachers, with the supervision of professors, field placement supervisors and cooperating teachers, taught a series of math and science lessons via video conferencing to 5th grade classes in a major urban public school. Two major results of this study indicate that: (1) teaching through videoconferencing highlights strengths and weaknesses in questioning skill techniques that are at the heart of an inquiry-based approach; (2) teaching through videoconferencing raises the intellectual challenge of teaching and allows preservice teachers to look face to face into their limited understanding of the content matter in math and science.  相似文献   

15.
16.
Self-efficacy beliefs that relate to teachers’ motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers’ science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers’ science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants’ science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants’ responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.  相似文献   

17.
There is a current national emphasis on science, technology, engineering, and mathematics (STEM). Additionally, many states are transitioning to the Next Generation Science Standards (NGSS), which encourage teachers to incorporate engineering in science classrooms as well as have their students learn science by doing science. Methods courses are also shifting to adequately prepare preservice science teachers in these areas. This study examines preservice science teachers’ pre- and post-ideal inquiry-based lesson plan scenarios before and after intervention in their Secondary Science Methods I and II courses. These preservice science teachers participated in a variety of opportunities to practice authentic science inquiry (ASI) pedagogical techniques as well as integrated STEM topics, with a particular emphasis on computer programming throughout their 80 h of Methods instruction. ASI is a type of inquiry where students learn science by conducting science research in a grade-appropriate manner. Thirty-eight preservice teachers’ scenarios were analyzed using a rubric from Spuck (2014) to determine the degree to which the ten components of ASI were included in scenarios pre- to post-instruction. Trends in ASI component inclusion are discussed. These findings indicate that preservice science teachers are proficient at writing inquiry-based lessons where they planned opportunities for their future students to collaborate, use scientific instrumentation, and collect and analyze data, but need additional support with developing student activities where students create testable questions, revise their question and methods, participate in peer review, and disseminate their results to their peers or the larger scientific community. Overall, the results suggest Methods instruction should reinforce preservice teachers’ focus on planning lessons which include opportunities for all ASI components. Interventions in the aforementioned areas of weak inclusion may be beneficial to preservice teachers.  相似文献   

18.
This paper reports on a study of elementary preservice teachers’ inquiry-based practices, their efficacy beliefs, and the role beliefs had on two preservice teachers’ practices in urban classrooms. Results show inquiry-based practices can be cultivated through field-based experiences and preservice teachers’ efficacy beliefs, as it relates to practice in urban settings, are malleable. Specifically, personal efficacy beliefs about teaching science improved or were sustained for one cohort of preservice teachers. However, beliefs about students’ ability to learn science, that is outcome beliefs, were less stable. The results of two case studies show that science content knowledge was a factor in preservice teachers’ inquiry-based practices. However, why preservice teachers’ beliefs about student learning declined is less clear. More research is needed, along with follow-up data on teacher induction, to learn how preservice teachers’ beliefs impact urban students’ science education.  相似文献   

19.
Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in J Res Sci Teach 32(8):797–816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn academic English. Teachers must have a clear understanding of science vocabulary in order to communicate and evaluate these understandings with students. The present study measured preservice teachers’ vocabulary knowledge during a science methods course and documented their use of science vocabulary during peer teaching. The data indicate that the course positively impacted the preservice teachers’ knowledge of select elementary science vocabulary; however, use of science terms was inconsistent in microteaching lessons. Recommendations include providing multiple vocabulary instruction strategies in teacher preparation.  相似文献   

20.
The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers’ (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science methods course. Data collection methods included pretests and posttests on science content, prequestionnaires and postquestionnaires for interest and self-efficacy, and four programming assignments. Statistical results showed that preservice teachers’ interest and self-efficacy with robotics increased. There was a statistically significant difference between preknowledge and postknowledge scores, and preservice teachers did show gains in learning how to write algorithms and debug programs over repeated programming tasks. The findings suggest that the robotics activity was an effective instructional strategy to enhance interest in robotics, increase self-efficacy to teach with robotics, develop understandings of science concepts, and promote the development of computational thinking skills. Study findings contribute quantitative evidence to the STEM literature on how robotics develops preservice teachers’ self-efficacy, science knowledge, and computational thinking skills in higher education science classroom contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号