首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By design or default, anatomy educators are often responsible for introducing students to medical professionalism. Although much has been said about the role of anatomical education, there are no published reports suggesting how to measure change. This study investigated what professionalism attitudes, if any, change during a gross anatomy course. Additionally, the influence of four dichotomous variables related to student identity and preparation for medical school were analyzed for their effect on professionalism attitudes. A cross‐sectional time‐one (T1; beginning of the course), time‐two (T2; end of the course) study using the Penn State College of Medicine Survey of Professionalism was conducted. A multivariate analysis of variance identified the main effects and interaction effects of categorical variables. A Mann Whitney U test verified significant differences. This study found a reprioritization of professionalism attitudes in favor of altruism (P = 0.04 with a Cohen's d = 0.26) at T2. Female students (P = 0.03, Cohen's d = 0.38) and students from a science background (P = 0.04, Cohen's d = 0.36) changed the most in favor of altruism. Interestingly, though several factors correlated with dissimilarities in professionalism values at T1, gender was the only factor to show a significant difference in professionalism attitudes at T2. This cohort of students reported a statistically significant increase in altruism and no significant decreases in other professionalism attitudes concurrent with the gross anatomy course. Anat Sci Educ 3:12–16, 2010. © 2009 American Association of Anatomists  相似文献   

2.
Medical professionals and public consumers expect that new physical therapy graduates possess cognitive, technical, and behavioral skills required to provide safe and high‐quality care to patients. The purpose of this study was to determine if a repertoire of ten professional behaviors assessed at the beginning of doctorate of physical therapy education and before the first significant clinical internship could be enhanced in a semester course in gross human anatomy using individual formative feedback. During the human anatomy course, 28 first‐year physical therapy students completed six biweekly, anonymous self‐ and peer assessment surveys that targeted ten professional behaviors important to physical therapists. All professional behaviors were assessed using a five‐point Likert scale. Feedback reports occurred at week eight (mid‐semester) and week 16 (end‐of‐semester) and comprised the direct intervention components of this study. At the midpoint of the semester, professional behavior scores and narrative comments from weeks two, four, and six were compiled and shared with each student by one of three faculty members in a feedback session. Students then submitted biweekly self‐and peer professional behavior assessments (weeks 10, 12, and 14) for the remainder of the human anatomy course. Differences between preintervention and postintervention scores for each of the ten professional behaviors were compared using the Wilcoxon signed‐ranks test. Upon receiving mid‐semester individual feedback, students demonstrated significant improvement in each of the ten professional behaviors. Results from this study indicated a gross anatomy laboratory dissection experience during the first academic semester provided an effective opportunity for teaching and assessing professional behaviors of doctoral students in physical therapy. Anat Sci Educ 6: 324–331. © 2013 American Association of Anatomists.  相似文献   

3.
Despite nearly 200 accredited entry‐level physical therapist education programs in the United States that culminate in a doctoral degree, only a paucity of reports have been published regarding the efficacy of peer teaching in gross anatomy. No one has described the usefulness of peer teaching from the viewpoint of the peer teacher. An organized peer teaching method provided by four second‐year doctors of physical therapy (DPT) students in a semester course in gross anatomy had a positive impact on the academic performance in gross anatomy of first‐year DPT students. The unique feature of the weekly peer teaching sessions was a packet assembled by the second‐year peer teachers, which contained diagrams, fill‐in‐the blank questions, and helpful mnemonic devices. This study surveyed perceptions of first‐year DPT students in response to a peer teaching method, using a structured 10‐item questionnaire and a five‐point Likert scale. Second‐year DPT peer teachers provided written reflections about the benefits and challenges of serving as a peer teacher. Results revealed that 13 planned peer‐teaching experiences provided by four second‐year DPT students were valuable and promoted a firm understanding of anatomical relationships important for the clinical competence of physical therapist students. Moreover, peer teachers acknowledged acquiring clinically desirable teaching, academic, organizational, and time management skills from the experience. As a result, physical therapist educators may wish to consider this model of peer teaching to augment their teaching strategies for a class in gross human anatomy. Anat Sci Ed 1:199–206, 2008. © 2008 American Association of Anatomists.  相似文献   

4.
Human anatomy in physical therapy programs is a basic science course serving as a foundation for subsequent clinical courses. Integration of anatomy with a clinical emphasis throughout a curriculum provides opportunities for reinforcement of previously learned material. Considering the human cadaver laboratory as a fixed cost to our program, we sought opportunities to add value to the resource via vertical integration into a clinical skills course taught later in the curriculum. We designed an opportunity for second-year physical therapy students to revisit the human anatomy laboratory to study select clinical musculoskeletal tests and the associated anatomy in a clinically relevant context. Students performed select orthopedic ligament test on human cadavers, then incised specific structures and repeated the tests. Students were able to feel and visualize the function of pertinent anatomy associated with the clinical tests. Ninety-five percent of respondents reported that the ligament stress testing experience enhanced their understanding of orthopedic clinical tests with 91% reporting an enhanced understanding of anatomy related to specific clinical tests. Likewise, the experience was perceived as enjoyable and valuable with 86% of respondents reporting the experience as enjoyable and 100% responding the experience should continue as part of the curriculum.  相似文献   

5.
Checklists have been widely used in the aviation industry ever since aircraft operations became more complex than any single pilot could reasonably remember. More recently, checklists have found their way into medicine, where cognitive function can be compromised by stress and fatigue. The use of checklists in medical education has rarely been reported, especially in the basic sciences. We explored whether the use of a checklist in the gross anatomy laboratory would improve learning outcomes, dissection quality, and students' satisfaction in the first-year Human Structure didactic block at Mayo Medical School. During the second half of a seven-week anatomy course, dissection teams were each day given a hardcopy checklist of the structures to be identified during that day's dissection. The first half of the course was considered the control, as students did not receive any checklists to utilize during dissection. The measured outcomes were scored on four practice practical examinations and four dissection quality assessments, two each from the first half (control) and second half of the course. A student satisfaction survey was distributed at the end of the course. Examination and dissection scores were analyzed for correlations between practice practical examination score and checklist use. Our data suggest that a daily hardcopy list of anatomical structures for active use in the gross anatomy laboratory increases practice practical examination scores and dissection quality. Students recommend the use of these checklists in future anatomy courses.  相似文献   

6.
This pilot study was designed to assess the perceptions of physical therapy (PT) and occupational therapy (OT) students regarding the use of computer-assisted pedagogy and prosection-oriented communications in the laboratory component of a human anatomy course at a comprehensive health sciences university in the southeastern United States. The goal was to determine whether student perceptions changed over the course of a summer session regarding verbal, visual, tactile, and web-based teaching methodologies. Pretest and post-test surveys were distributed online to students who volunteered to participate in the pilot study. Despite the relatively small sample size, statistically significant results indicated that PT and OT students who participated in this study perceived an improved ability to name major anatomical structures from memory, to draw major anatomical structures from memory, and to explain major anatomical relationships from memory. Students differed in their preferred learning styles. This study demonstrates that the combination of small group learning and digital web-based learning seems to increase PT and OT students' confidence in their anatomical knowledge. Further research is needed to determine which forms of integrated instruction lead to improved student performance in the human gross anatomy laboratory.  相似文献   

7.
Peer assessment has been shown to be an effective tool to promote professionalism in medical students. Peer assessment may be particularly useful in anatomy dissection laboratory as the required close collaboration and long hours of anatomy laboratory provide students insights into their peers' work habits and interpersonal skills. The objective of this study was to quantitatively and qualitatively analyze the use of a validated peer assessment tool in Gross Anatomy. Students in a first year medical school class evaluated three members of their dissection group using an online survey tool. The mid‐course and end‐of‐course evaluation included open‐ended comments, as well as a five‐point scale that measured three work habits, two interpersonal attributes and one overall score. All 267 students completed the assignment. The overall score and four of the five other assessed categories showed significant improvement from the mid‐ to end‐of‐course evaluations. Quantitative and qualitative data also revealed significant improvement among the students who received the lowest mid‐course assessments. Seventy‐six percent of the class agreed with the statement: “Based on the feedback I received, I made a change in how I worked with or taught my peers.” The use of this peer assessment tool used by students in anatomy was associated with improvements in work habits and interpersonal attributes, particularly by the cohort of students who received the lowest mid‐course feedback. Peer assessment offers students an opportunity to improve their interpersonal skills and work habits. Anat Sci Educ 7: 144–152. © 2013 American Association of Anatomists.  相似文献   

8.
The one‐minute preceptor (OMP) is a time‐efficient, learner‐centered teaching method used in a busy ambulatory care setting. This project evaluated the effects of training experienced anatomy teachers in the use of the OMP in the gross anatomy laboratory on students' perceived learning. Second‐year medical students from a five‐year, undergraduate‐entry, system‐ and problem‐based medical program were divided randomly into two groups of 76 students each. The groups took part in the same gross anatomy laboratory session on different dates, supervised by the same two teachers (both with over 25 years of teaching experience). The teachers attended a workshop on the use of the OMP between the two sessions. Students were given a questionnaire at the end of the two sessions to indicate their agreements to statements regarding their learning experiences. Semistructured interviews were conducted with the two teachers after the second session. Results showed that training experienced anatomy teachers in the use of the OMP did not result in improvement of student learning perception in the gross anatomy laboratory. The experienced teachers have developed their own approaches with elements similar to those in the OMP: being learner centered and adaptable to individual student's needs, providing feedback, and enhancing teacher immediacy. They do not have an explicit structure such as the OMP, and are thus flexible and adaptive. Confining the teachers' teaching behaviors to the OMP structure could limit their performance. Although there are theoretical advantages for novice teachers in adopting the OMP technique, these advantages still need to be supported by further studies. Anat Sci Educ 7: 124–129. © 2013 American Association of Anatomists.  相似文献   

9.
An audience response system (ARS) has become popular among educators in medicine and the health professions because of the system's ability to engage listeners during a lecture presentation. No one has described the usefulness of ARS technology during planned nonlecture peer teaching sessions in gross anatomy instruction for health professionals. The unique feature of each peer teaching session was a nongraded 12–15 item ARS quiz assembled by six second‐year doctor of physical therapy (DPT) students and purposely placed at the beginning of the review session for those first‐year DPT students in attendance. This study used a ten‐item questionnaire and a five‐point Likert scale in addition to three open ended questions to survey perceptions of both first‐year and second‐year DPT students about the usefulness of ARS technology implemented during weekly interactive peer teaching sessions during a semester course in Anatomy for Physical Therapists. First‐year students overwhelmingly acknowledged the ARS system permitted each student to self‐assess his/her preparedness for a quiz or examination and compare his/her performance with that of classmates. Peer teachers recognized an ARS quiz provided them an opportunity to: (1) estimate first‐year students' level of understanding of anatomical concepts; and (2) effectively prepare first‐year students for their weekly quizzes and future examinations. On the basis of the mutual benefits derived by both students/tutees and teachers/tutors, physical therapist educators may wish to consider using ARS technology to enhance teaching methods for a class in gross human anatomy. Anat Sci Educ 2: 286–293, 2009. © 2009 American Association of Anatomists.  相似文献   

10.
Untimed examinations are popular with students because there is a perception that first impressions may be incorrect, and that difficult questions require more time for reflection. In this report, we tested the hypothesis that timed anatomy practical examinations are inherently more difficult than untimed examinations. Students in the Doctor of Physical Therapy program at Thomas Jefferson University were assessed on their understanding of anatomic relationships using multiple‐choice questions. For the class of 2012 (n = 46), students were allowed to circulate freely among 40 testing stations during the 40‐minute testing session. For the class of 2013 (n = 46), students were required to move sequentially through the 40 testing stations (one minute per item). Students in both years were given three practical examinations covering the back/upper limb, lower limb, and trunk. An identical set of questions was used for both groups of students (untimed and timed examinations). Our results indicate that there is no significant difference between student performance on untimed and timed examinations (final percent scores of 87.3 and 88.9, respectively). This result also held true for students in the top and bottom 20th percentiles of the class. Moreover, time limits did not lead to errors on even the most difficult, higher‐order questions (i.e., items with P‐values < 0.70). Thus, limiting time at testing stations during an anatomy practical examination does not adversely affect student performance. Anat Sci Educ 6: 281–285. © 2013 American Association of Anatomists.  相似文献   

11.
Improving professional attitudes and behaviors requires critical self reflection. Research on reflection is necessary to understand professionalism among medical students. The aims of this prospective validation study at the Mayo Medical School and Cleveland Clinic Lerner College of Medicine were: (1) to develop and validate a new instrument for measuring reflection on professionalism, and (2) determine whether learner variables are associated with reflection on the gross anatomy experience. An instrument for assessing reflections on gross anatomy, which was comprised of 12 items structured on five‐point scales, was developed. Factor analysis revealed a three‐dimensional model including low reflection (four items), moderate reflection (five items), and high reflection (three items). Item mean scores ranged from 3.05 to 4.50. The overall mean for all 12 items was 3.91 (SD = 0.52). Internal consistency reliability (Cronbach's α) was satisfactory for individual factors and overall (Factor 1 α = 0.78; Factor 2 α = 0.69; Factor 3 α = 0.70; Overall α = 0.75). Simple linear regression analysis indicated that reflection scores were negatively associated with teamwork peer scores (P = 0.018). The authors report the first validated measurement of medical student reflection on professionalism in gross anatomy. Critical reflection is a recognized component of professionalism and may be important for behavior change. This instrument may be used in future research on professionalism among medical students. Anat Sci Educ 6: 232–238. © 2012 American Association of Anatomists.  相似文献   

12.
This article illustrates details of the planning, building, and improvement phases of a cost‐efficient, full‐dissection gross anatomy laboratory on a campus of an historically design‐centric university. Special considerations were given throughout the project to the nature of hosting cadavers in a building shared amongst all undergraduate majors. The article addresses these needs along with discussion of relevant furnishings and infrastructure that went into the creation of a fully outfitted gross anatomy laboratory (ten cadavers) completed within a significantly constrained timeline and $210,000 budget. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

13.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

14.
The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight‐hour days. During the time that a tagged examination is being created, student productivity may be reduced as the anatomy laboratory is inaccessible to students. Further, the type of questions that can be asked in a tagged laboratory examination may limit student assessment to lower level cognitive abilities and may limit the instructors' ability to assess the students' understanding of anatomical and clinical concepts. Anatomy is a foundational science in the Physical Therapy curriculum and a thorough understanding of anatomy is necessary to progress through the subsequent clinical courses. Physical therapy curricula have evolved to reflect the changing role of physical therapists to primary caregivers by introducing a greater scope of clinical courses earlier in the curriculum. Physical therapy students must have a thorough understanding of clinical anatomy early in the education process. However, traditional anatomy examination methods may not be reflective of the clinical thought processes required of physical therapy students. Traditional laboratory examination methods also reduce student productivity by limiting access during examination set‐up and breakdown. To provide a greater complexity of questions and reduced overall laboratory time required for examinations, the Physical Therapy Program at Mercer University has introduced oral laboratory examinations for the gross anatomy course series. Anat Sci Educ 6: 271–276. © 2012 American Association of Anatomists.  相似文献   

15.
The purpose of this study was to examine the histopathologic reliability of embalmed cadaveric tissue taken from the gross anatomy laboratory. Tissue samples from hearts, livers, lungs, and kidneys were collected after the medical students’ dissection course was completed. All of the cadavers were embalmed in a formalin‐based fixative solution. The tissue was processed, embedded in paraffin, sectioned at six micrometers, and stained with H&E. The microscope slides were evaluated by a board certified pathologist to determine whether the cellular components of the tissues were preserved at a high enough quality to allow for histopathologic diagnosis. There was a statistically significant relationship between ratings and organ groups. Across all organs, there was a smaller proportion of “poor” ratings. The lung group had the highest percentage of “poor” ratings (23.1%). The heart group had the least “poor” ratings (0.0%). The largest percentage of “satisfactory” ratings were in the lung group (52.8%), and the heart group contained the highest percentage of “good” ratings (58.5%) The lung group had the lowest percentage of “good” ratings (24.2%). These results indicate that heart tissue is more reliable than lung, kidney, or liver tissue when utilizing tissue from the gross anatomy laboratory for research and/or educational purposes. This information advises educators and researchers about the quality and histopathologic reliability of tissue samples obtained from the gross anatomy laboratory. Anat Sci Educ 11: 207–214. © 2017 American Association of Anatomists.  相似文献   

16.
Many medical schools have undergone curricular reform recently. With these reforms, time spent teaching anatomy has been reduced, and there has been a general shift to a pass/fail grading system. At Indiana University School of Medicine (IUSM), a new curriculum was implemented in fall 2016. The year-long human gross anatomy course taught in 2015 was condensed into an integrated, semester-long course starting in 2016. Additionally, the grading scale shifted to pass/fail. This study examined first-year medical student performance on anatomy practical laboratory examinations—specifically, among lower-order (pure identification) questions and higher-order (function, innervation) questions. Participants included medical students from a pre-curricular reform cohort (year 2015, 34 students) and two post-curricular reform cohorts (years 2016, 30 students and 2017, 33 students). A Kruskal–Wallis ANOVA test was used to determine differences of these questions among the three cohorts. Additionally, 40 of the same lower-order questions that were asked on gross anatomy laboratory examinations from medical student cohort year 2015 and year 2016 were further analyzed using an independent samples t-test. Results demonstrated that the pre-curricular reform cohort scored significantly higher on both lower-order (median = 81, p < 0.001) and higher-order questions (median = 82.5, p < 0.05) than both post-curricular reform cohorts. Additionally, when reviewing the selected 40 similar questions, it was found that the pre-curricular reform cohort averaged significantly higher (82.1 ± 16.1) than the post-curricular reform cohort from 2016 (69.3 ± 21.8, p = 0.004). This study provides evidence about the impact of curricular reform on medical student anatomical knowledge.  相似文献   

17.
To improve student preparedness for anatomy laboratory dissection, the dental gross anatomy laboratory was transformed using flipped classroom pedagogy. Instead of spending class time explaining the procedures and anatomical structures for each laboratory, students were provided online materials to prepare for laboratory on their own. Eliminating in‐class preparation provided the opportunity to end each period with integrative group activities that connected laboratory and lecture material and explored clinical correlations. Materials provided for prelaboratory preparation included: custom‐made, three‐dimensional (3D) anatomy videos, abbreviated dissection instructions, key atlas figures, and dissection videos. Data from three years of the course (n = 241 students) allowed for analysis of students' preferences for these materials and detailed tracking of usage of 3D anatomy videos. Students reported spending an average of 27:22 (±17:56) minutes preparing for laboratory, similar to the 30 minutes previously allocated for in‐class dissection preparation. The 3D anatomy videos and key atlas figures were rated the most helpful resources. Scores on laboratory examinations were compared for the three years before the curriculum change (2011–2013; n = 242) and three years after (2014–2016; n = 241). There was no change in average grades on the first and second laboratory examinations. However, on the final semi‐cumulative laboratory examination, scores were significantly higher in the post‐flip classes (P = 0.04). These results demonstrate an effective model for applying flipped classroom pedagogy to the gross anatomy laboratory and illustrate a meaningful role for 3D anatomy visualizations in a dissection‐based course. Anat Sci Educ 11: 385–396. © 2017 American Association of Anatomists.  相似文献   

18.
Chiropractic and medical colleges have experienced a significant increase in the number of female applicants in recent years, a percentage of whom are pregnant or become pregnant following admission. It is therefore important to ask the question: How do institutions that educate future health care providers address the issue of pregnancy and the gross anatomy laboratory? A survey instrument was developed and pretested. IRB approval was obtained. The administrators charged with overseeing the policies and practices for the gross anatomy laboratory at each of the 16 chiropractic colleges in the USA were identified and contacted. An email containing a link to the Web based survey was sent to each, using SurveyMonkey. The survey response rate was 100%. A majority of colleges (69%) have a written policy regarding pregnancy and the gross laboratory. Of these, 36% allow pregnant students to take the laboratory if a waiver is signed, 18% do not allow them to take the laboratory, 18% allow them to take it without a waiver, and 27% have other policies. In cases where students do not take the gross laboratory while pregnant, 64% of colleges require them to take the laboratory after completion of their pregnancy, 27% require them to complete an alternative (dry) laboratory, and 9% have other policies. Considerable diversity exists in the way colleges address this issue. It is at present unknown whether pregnant students or their fetuses are at any risk from laboratory chemicals. Risk assessment research is needed before consistent policies can be developed. Anat Sci Educ. © 2011 American Association of Anatomists.  相似文献   

19.
Reciprocal peer teaching (RPT), wherein students alternate roles as teacher and learner, has been applied in several educational arenas with varying success. Here, we describe the implementation of a reciprocal peer teaching protocol in a human gross anatomy laboratory curriculum. We compared the outcomes of the RPT class with those of previous classes in which RPT was not employed. Objective data (i.e., course grades) show no significant differences in gross anatomy laboratory grades between students in the RPT and non‐RPT classes. To subjectively evaluate the relative success of RPT in the laboratory, we analyzed student opinions obtained through anonymous surveys. These data show that a powerful majority of student respondents felt that RPT was beneficial and should be used in future classes. The greatest disadvantage was unreliable quality of teaching from peers; however, most students still felt that RPT should be continued. Students who felt that they had insufficient hands‐on experience (by virtue of dissecting only half the time) were significantly more likely to recommend abandoning RPT. These results underscore the importance of active student dissection, and suggest that a modified version of the described RPT protocol may satisfy more of the needs of large, diverse student populations. Several hidden benefits of RPT exist for faculty, administration, and students, including reduced need for large numbers of cadavers, attendant reduction in operating costs, and smaller student‐to‐teacher ratios. Anat Sci Educ 2:143–149, 2009. © 2009 American Association of Anatomists.  相似文献   

20.
There are concerns among healthcare practitioners about poor anatomical knowledge among recent healthcare graduates. Universal Design for Learning (UDL) is a framework developed to enhance students' experience of learning and help students to become motivated learners. This scoping review identified whether UDL has been utilized in third level healthcare education and if so, whether it had been used to enhance student motivation to study anatomy. Seven online databases were searched for studies reporting the use of UDL in the curricula of medical, dental, occupational therapy (OT) or speech and language therapy (SLT) programs. Studies were screened for eligibility with set inclusion criteria. Data were extracted and analyzed. Analysis revealed that UDL was not specifically mentioned in any of the studies thus there are no published studies on UDL being formally applied in healthcare education. However, the authors identified 33 publications that described teaching methods which aligned with UDL in anatomy curricula and a thematic analysis yielded four main themes relating to teaching strategies being employed. Universal design for learning was not mentioned specifically, indicating that educators may not be aware of the educational framework, although they appeared to be utilizing aspects of it in their teaching. The review revealed that there is a lack of research concerning the anatomy education of OT and SLT students. The role of UDL in enhancing motivation to learn anatomy in medical, dental, OT and SLT programs has yet to be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号