首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
这次练习课,我编选了下面的题组:1.过椭圆 x~2/64 y~2/36=1上一定点P(-8,0),作直线交椭圆于 Q 点,求线段PQ 的中点的轨迹方程;2.求椭圆 x~2/4 y~2=1的斜率为1的弦的中点轨迹方程;3.在椭圆 x~2/16 y~2/4=1中,求经过点  相似文献   

2.
一、“点差法”在解几中的应用1.求弦中,最的轨迹方程 例l已知椭圆x^/2+y^2=1,求斜率为2的平行弦中点的轨迹方程。  相似文献   

3.
求圆锥曲线弦的中点轨迹方程,在教科书和参考书中,都是用消去参数的方法来求出其轨迹方程的。这种方法计算冗长,容易搞错。用斜率公式求弦的中点轨迹方程,只要稍加计算,就能求出其轨迹方程,学生很容易掌握。用斜率公式还能解决一些有关弦的中点的其他问题。为了叙述方便,先介绍圆锥曲线弦的斜率和弦的中点坐标间的关系。如图1所示,AB是椭圆x~2/a~2 y~2/b~2=1的弦,而M是弦AB的中点。设A、B的坐标分别为(x_1,y_1),(x_2,y_2),弦AB的中点M的坐标为(x,y),  相似文献   

4.
<正>1引入例1:直线l过抛物线y2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2:直线l过抛物线y2:直线l过抛物线y2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=8y相交所得的弦为PQ,求PQ的中点M的轨迹方程。分析上述三个例题的轨迹方程,得到如下结论:过抛物线内对称轴上一定点(包括顶点)的直线截抛物线所得弦中点的轨迹是一条以该定点为顶点,通径为原抛物线的一半的抛物线,且所得抛物线开口方向和对称轴与原抛物线相同。  相似文献   

5.
关于椭圆的中点弦问题   总被引:1,自引:0,他引:1  
在已知椭圆中,关于其中点弦的以下三个问题: (1) 求弦长为定值的弦的中点的轨迹方程; (2) 求弦长为定值时,弦的中点到椭圆的中心的距离的最大值; (3) 弦的中点到椭圆的中心的距离为定值时,求弦长的最大值。笔者所见的讨论不多,偶有所见,其解法也往往比较复杂。本文旨在用同一种方法——参数坐标法,来探求上述三个问题,解法简捷明了。为了应用方便,将有关结论归结为以下两个定理: 定理1 设椭圆Γ:x~2/a~2 y~2/b~2=1(a>b>0),  相似文献   

6.
本刊86年第3期《二次曲线中点弦方程和弦中点的轨迹方程》一文例3“过点P(0,1)作直线与抛物线y~2=x相交,求被抛物线截得的弦的中点的轨迹的方程”的答案中说轨迹是抛物线(y-1/2)~2=1/2(x 1/2)位于已知抛物线y~2=x内且在x轴下方的那一段  相似文献   

7.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

8.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

9.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

10.
新教材明确指出 :将圆按照某个方向均匀压缩 (拉长 )可以得到椭圆因此椭圆与圆之间 ,可以通过伸缩变换转化 .三角函数图象变换中的周期变换和振幅变换实际上就是图象沿x轴和y轴方向上的伸缩变换 .由于我们对圆的性质相对于椭圆来说要熟悉得多 ,因此解决椭圆问题时 ,有时可化为圆来解决 ,只要利用伸缩变换即可 .例 1 求椭圆 x2a2 +y2b2 =1的斜率为k的一组平行弦中点的轨迹方程 .解 作变换 x′ =bax ,y′=y ,则椭圆化成圆x′2 +y′2 =b2 ,平行弦方程y=kx +m化成y′=abkx′ +m .易得在圆内平行弦中点的轨迹是垂直于弦且过圆心的直线y′=-bakx…  相似文献   

11.
平面解析几何中,求二次曲线平行弦中点的轨迹问题,需引入渐近方向等概念,本文利用点对称概念解决了寻求一般二次曲线平行弦的中点轨迹方程等问题,供同行参考.  相似文献   

12.
在中学解析几何中,大家知道有心圆锥曲线的平行弦中点的轨迹是过中心的一条直线(其实是线段或射线),这条直线称为这有心圆锥曲线的一条直径,如图1,在椭圆中,与弦CD平行的弦的中点的轨迹是过中心O的直径A'B';平行于A'B'的弦EF的中点的轨迹是过中心O的直径AB,不难证明A'B'∥EF,AB∥CD。称AB和A'B'是椭圆的一对共轭直径。  相似文献   

13.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

14.
中点弦问题常见的题型有:1.求中点弦所在的直线方程;2.求弦的中点的轨迹方程;3.求弦长为定值的弦中点的坐标.常用的求解策略是:1.两式相减用中点公式求得斜率;2.联立方  相似文献   

15.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

16.
在中学解析几何中求动点的轨迹,特别是求二次曲线的平行弦与绕定点的转动弦的中点轨迹一般都比较繁难,但如果恰当地使用二次曲线的直径方程,就会较简捷地推出结果.本文仅就二次曲线的直径方程在求二次曲线弦的中点轨迹的应用作一些初步的整理和探讨.  相似文献   

17.
平面解析几何中,有关二次曲线的中点问题,大致涉及求:“弦所在的直线方程”,“平行弦中点轨迹”,“绕定点转动弦中点轨迹”,“定长弦中点轨迹”,“弦”的长度,这五个方面的问题.一般在解决这些问题的方法上都较繁难.本文就针对这一情况,试以公式化的统一形式给予解决。而使解题方法简单、易行. 设二次曲线为:  相似文献   

18.
求圆锥曲线的切线方程,由于牵涉的知识面较广和解题中的技巧性较强,历来是学生们课外学习中一个饶有兴趣的内容,本文的目的在于,从不同于常规的角度去审视切线,并从中得到几种求切线方程的方法。一切线与平行弦中点轨迹已知曲线Ax~2+By~2+Cx+Dy+F=0 (1) 设P(x_1,y_1),Q(x_2,y_2)是曲线上两点,PQ的斜率为K,M(x,y)为PQ为中点。则 Ax_1~2+By_1~2+Cx_1+Dy_1+F=0 (2)  相似文献   

19.
<正>1问题背景在圆锥曲线问题中,"点差法"即代点相减法,对于解决中点弦方程、弦中点轨迹方程以及对称问题等方面都非常有效,堪称利器([1,2]).然而,"点差法"有时却会失效,导致错误的答案([1,2]).然而,"点差法"有时却会失效,导致错误的答案([3]).以笔者所在学校的高二数学月考题为例:例1已知直线l经过定点(0,1),被双曲线x([3]).以笔者所在学校的高二数学月考题为例:例1已知直线l经过定点(0,1),被双曲线x2-y2-y2/4=1所截得的弦的中点轨迹方程是.大部分学生由"点差法"可求出轨迹方程,结果是4x2/4=1所截得的弦的中点轨迹方程是.大部分学生由"点差法"可求出轨迹方程,结果是4x2-y2-y2+y=0,但正确答案是4x2+y=0,但正确答案是4x2-y2-y2+y=0,y∈(-∞,  相似文献   

20.
在中学解析几何中求动点的轨迹,特别是求二次曲线的平行弦与绕定点的转动弦的中点轨迹一般都比较繁难,但如果恰当地使用二次曲线的直径方程,就会较简捷地推出结果.本仅就二次曲线的直径方程在求二次曲线弦的中点轨迹的应用作一些初步的整理和探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号