首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this correspondence, the problem of exponential stability for switched genetic regulatory networks (GRNs) with time delays is investigated. The GRNs are composed of N modes and the network switches from one mode to another. By employing the piecewise Lyapunov functional method combined with the average dwell time approach and by using a novel Lyapunov–Krasovskii functional (LKF), sufficient criteria are given to ensure the exponential stability for the switched GRNs with constant and time-varying delays, respectively. These criteria are proved to be much less conservative than the most recent results, since the results reported in this paper not only depend on the delay bounds, but also depend on the partitioning. All the conditions presented here are in the form of matrix inequalities which are easy to be verified via the Matlab toolbox. Two examples are provided in the end of this paper to illustrate the effectiveness of the obtained theoretical results.  相似文献   

2.
Although pure formamidinium iodide perovskite (FAPbI3) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI3. However, state-of-the-art formamidinium–cesium (FA–Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI3, limited by the different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible, highly efficient and stable solar cells based on FA1xCsxPbI3 (x = 0.05–0.16) films with uniform composition distribution in the nanoscale and low defect densities. We also revealed a new stabilization mechanism for Cs doping to stabilize FAPbI3, i.e. the incorporation of Cs into FAPbI3 significantly reduces the electron–phonon coupling strength to suppress ionic migration, thereby improving the stability of FA–Cs-based devices.  相似文献   

3.
Resources can affect plant productivity and biodiversity simultaneously and thus are key drivers of their relationships in addition to plant–plant interactions. However, most previous studies only focused on a single resource while neglecting the nature of resource multidimensionality. Here we integrated four essential resources for plant growth into a single metric of resource diversity (RD) to investigate its effects on the productivity–biodiversity relationship (PBR) across Chinese grasslands. Results showed that habitats differing in RD have different PBRs—positive in low-resource habitats, but neutral in medium- and high-resource ones—while collectively, a weak positive PBR was observed. However, when excluding direct effects of RD on productivity and biodiversity, the PBR in high-resource habitats became negative, which leads to a unimodal instead of a positive PBR along the RD gradient. By integrating resource effects and changing plant–plant interactions into a unified framework with the RD gradient, our work contributes to uncovering underlying mechanisms for inconsistent PBRs at large scales.  相似文献   

4.
This paper concerns the stability analysis problem for stochastic delayed switched genetic regulatory networks (GRNs) with both stable and unstable subsystems. By employing the piecewise Lyapunov functional method combined with the average dwell time approach, we show that if the average dwell time is chosen sufficiently large and the derivative of the Lyapunov-like function for unstable subsystems is bounded by certain kind of continuous function, then exponential stability criteria of a desired degree are guaranteed. The derived results show that the minimal average dwell time is proportional to the time delays. Finally, an example is given to illustrate the effectiveness of the derived results.  相似文献   

5.
Temperature probes onboard the Chang’E-4 (CE-4) spacecraft provide the first in situ regolith temperature measurements from the far side of the Moon. We present these temperature measurements with a customized thermal model and reveal the particle size of the lunar regolith at the CE-4 landing site to be ∼15 μm on average over depth, which indicates an immature regolith below the surface. In addition, the conductive component of thermal conductivity is measured as ∼1.53 × 10–3 W m–1 K–1 on the surface and ∼8.48 × 10–3 W m–1 K–1 at a depth of 1 m. The average bulk density is ∼471 kg m–3 on the surface and ∼824 kg m–3 in the upper 30 cm of the lunar regolith. These thermophysical properties provide important additional ‘ground truth’ at the lunar far side, which is critical for the future analysis and interpretation of global temperature observations.  相似文献   

6.
Nonfullerene acceptors are being investigated for use in polymer solar cells (PSCs), with their advantages of extending the absorption range, reducing the energy loss and therefore enhancing the power conversion efficiency (PCE). However, to further boost the PCE, mobilities of these nonfullerene acceptors should be improved. For nonfullerene acceptors, the π–π stacking distance between cofacially stacked molecules significantly affects their mobility. Here, we demonstrate a strategy to increase the mobility of heteroheptacene-based nonfullerene acceptors by reducing their π–π stacking distances via control over the bulkiness of lateral side chains. Incorporation of 2-butyloctyl substituents into the nonfullerene acceptor (M36) leads to an increased mobility with a reduced π–π stacking distance of 3.45 Å. Consequently, M36 affords an enhanced PCE of 16%, which is the highest among all acceptor-donor-acceptor-type nonfullerene acceptors to date. This strategy of control over the bulkiness of side chains on nonfullerene acceptors should aid the development of more efficient PSCs.  相似文献   

7.
Transients are fundamental to ecological systems with significant implications to management, conservation and biological control. We uncover a type of transient synchronization behavior in spatial ecological networks whose local dynamics are of the chaotic, predator–prey type. In the parameter regime where there is phase synchronization among all the patches, complete synchronization (i.e. synchronization in both phase and amplitude) can arise in certain pairs of patches as determined by the network symmetry—henceforth the phenomenon of  ‘synchronization within synchronization.’ Distinct patterns of complete synchronization coexist but, due to intrinsic instability or noise, each pattern is a transient and there is random, intermittent switching among the patterns in the course of time evolution. The probability distribution of the transient time is found to follow an algebraic scaling law with a divergent average transient lifetime. Based on symmetry considerations, we develop a stability analysis to understand these phenomena. The general principle of symmetry can also be exploited to explain previously discovered, counterintuitive synchronization behaviors in ecological networks.  相似文献   

8.
Aprotic lithium–oxygen (Li–O2) batteries are receiving intense research interest by virtue of their ultra-high theoretical specific energy. However, current Li–O2 batteries are suffering from severe barriers, such as sluggish reaction kinetics and undesired parasitic reactions. Recently, molecular catalysts, i.e. redox mediators (RMs), have been explored to catalyse the oxygen electrochemistry in Li–O2 batteries and are regarded as an advanced solution. To fully unlock the capability of Li–O2 batteries, an in-depth understanding of the catalytic mechanisms of RMs is necessary. In this review, we summarize the working principles of RMs and their selection criteria, highlight the recent significant progress of RMs and discuss the critical scientific and technical challenges on the design of efficient RMs for next-generation Li–O2 batteries.  相似文献   

9.
Applying metal organic frameworks (MOFs) in electrochemical systems is a currently emerging field owing to the rich metal nodes and highly specific surface area of MOFs. However, the problems for MOFs that need to be solved urgently are poor electrical conductivity and low ion transport. Here we present a facile in situ growth method for the rational synthesis of MOFs@hollow mesoporous carbon spheres (HMCS) yolk–shell-structured hybrid material for the first time. The size of the encapsulated Zeolitic Imidazolate Framework-67 (ZIF-67) is well controlled to 100 nm due to the spatial confinement effect of HMCS, and the electrical conductivity of ZIF-67 is also increased significantly. The ZIF@HMCS-25% hybrid material obtained exhibits a highly efficient oxygen reduction reaction activity with 0.823 V (vs. reversible hydrogen electrode) half-wave potential and an even higher kinetic current density (JK = 13.8 mA cm−2) than commercial Pt/C. ZIF@HMCS-25% also displays excellent oxygen evolution reaction performance and the overpotential of ZIF@HMCS-25% at 10 mA cm−2 is 407 mV. In addition, ZIF@HMCS-25% is further employed as an air electrode for a rechargeable Zn–air battery, exhibiting a high power density (120.2 mW cm−2 at 171.4 mA cm−2) and long-term charge/discharge stability (80 h at 5 mA cm−2). This MOFs@HMCS yolk–shell design provides a versatile method for the application of MOFs as electrocatalysts directly.  相似文献   

10.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

11.
提出一种基于动态贝叶斯网络的基因调控网络重构方法 LC-DBN.该方法寻找各基因最优的调控时延;同时融合时序微阵列数据和转录因子连接位点数据,构建基因调控网络.对25个酵母基因调控网络进行重构实验,结果显示,构建的网络敏感度较Tan方法提高0.72%,精确度提高0.16%.  相似文献   

12.
Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6–310 mg gallic acid equivalent/g fresh weight (fw), and 46.6–733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44–58 %), hydrogen peroxide (15.3–18.6 %), and hydroxyl radicals (50–85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.  相似文献   

13.
Prickles act against herbivores, pathogens or mechanical injury, while also preventing water loss. However, whether prickles have new function and the molecular genetics of prickle patterning remain poorly explored. Here, we generated a high-quality reference genome assembly for ‘Basye''s Thornless’ (BT), a prickle-free cultivar of Rosa wichuraiana, to identify genetic elements related to stem prickle development. The BT genome harbors a high level of sequence diversity in itself and with cultivar ‘Old Blush’ (R. chinensis), a founder genotype in rose domestication. Inheritance of stem prickle density was determined and two QTL were identified. Differentially expressed genes in QTL were involved in water-related functions, suggesting that prickle density may hitchhike with adaptations to moist environments. While the prickle-related gene-regulatory-network (GRN) was highly conserved, the expression variation of key candidate genes was associated with prickle density. Our study provides fundamental resources and insights for genome evolution in the Rosaceae. Ongoing efforts on identification of the molecular bases for key rose traits may lead to improvements for horticultural markets.  相似文献   

14.
15.
The past Asian precipitation δ18O (δ18Op) records from stalagmites and other deposits have shown significant orbital-scale variations, but their climatic implications and regional differences are still not fully understood. This study, as the first attempt of a 300-kyr transient stable isotope-enabled simulation, investigated the characteristics and mechanisms of the orbital-scale δ18Op variations in three representative regions of Asia: arid Central Asia (CA), monsoonal South Asia (SA) and monsoonal East Asia (EA). The modelling results showed that the variations in the CA, SA and EA annual δ18Op exhibited significant but asynchronous 23-kyr precession cycles. Further analyses revealed that although the precession-induced insolation variation was the ultimate cause of the δ18Op variation in all three regions, the dominant mechanisms and the involved physical processes were distinct among them. For the CA region, the rainy-season (November–March) temperature effect and water vapour transport by the westerly circulation were identified as the key precession-scale processes linking the October–February boreal mid-latitude insolation to the rainy-season or annual δ18Op. In the SA region, the rainy-season (June–September) precipitation amount effect and upstream depletion of the monsoonal water vapour δ18O served as the main mechanisms linking the rainy-season or annual δ18Op to the April–July insolation variation at the precession scale. For the EA region, however, the precession-scale annual δ18Op was mainly controlled by the late-monsoon (August–September) and pre-monsoon (April–May) water vapour transport patterns, which were driven by the July–August insolation and the global ice volume, respectively. These results suggest that the climatic implications of the orbital-scale Asia δ18Op variations are sensitive to their geographic locations as determined by the combined effects of insolation and regional circulation patterns associated with the respective rainy seasons. This study provides new insights into understanding the regional differences and formation mechanisms of the Asian orbital-scale δ18Op variations.  相似文献   

16.
岳振明  赵树宽 《科研管理》2022,43(5):141-153
    在知识经济时代,加强创新网络研究对指导企业创新具有重要意义。本文围绕我国创新网络研究现状与趋势这一主题,以中国知网(CNKI)和中国社会科学引文索引(CSSCI)数据库作为文献来源,通过样本文献回顾梳理并运用知识图谱分析、突现词分析等文献计量学方法,对发文量趋势、核心作者等研究现状,创新网络类型、理论基础等研究内容以及研究趋势进行分析。研究结论如下:(1)国内创新网络研究起步早、成果丰硕,发文量逐年增加,形成了实力较强的核心研究团队;(2)技术创新网络、区域创新网络、企业创新网络等七种创新网络是国内学者最为关注的研究领域,而协同合作创新、创新网络演化、网络知识资源等则是学者们关注的研究主题;从学术取向上看,国内学者多以网络理论、资源依赖理论、资源基础理论、结构洞理论等为基础进行应用型研究,而理论创新成果少;(3)通过突现词分析发现,近年来出现的知识权力、协同创新研究反映了知识经济时代创新活动的新特征,是该领域新的研究趋势。  相似文献   

17.
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidence has shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here, we propose an entropy-rate-based framework, based on combined topological–temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological–temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that, for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension, the combined topological–temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity for incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.  相似文献   

18.
The effects of nanoconfined water and the charge storage mechanism are crucial to achieving the ultrahigh electrochemical performance of two-dimensional transition metal carbides (MXenes). We propose a facile method to manipulate nanoconfined water through surface chemistry modification. By introducing oxygen and nitrogen surface groups, more active sites were created for Ti3C2 MXene, and the interlayer spacing was significantly increased by accommodating three-layer nanoconfined water. Exceptionally high capacitance of 550 F g–1 (2000 F cm–3) was obtained with outstanding high-rate performance. The atomic scale elucidation of the layer-dependent properties of nanoconfined water and pseudocapacitive charge storage was deeply probed through a combination of ‘computational and experimental microscopy’. We believe that an understanding of, and a manipulation strategy for, nanoconfined water will shed light on ways to improve the electrochemical performance of MXene and other two-dimensional materials.  相似文献   

19.
Electrolyte anions are critical for achieving high-voltage stable potassium-metal batteries (PMBs). However, the common anions cannot simultaneously prevent the formation of ‘dead K’ and the corrosion of Al current collector, resulting in poor cycling stability. Here, we demonstrate cyclic anion of hexafluoropropane-1,3-disulfonimide-based electrolytes that can mitigate the ‘dead K’ and remarkably enhance the high-voltage stability of PMBs. Particularly, even using low salt concentration (0.8 M) and additive-free carbonate-based electrolytes, the PMBs with a high-voltage polyanion cathode (4.4 V) also exhibit excellent cycling stability of 200 cycles with a good capacity retention of 83%. This noticeable electrochemical performance is due to the highly efficient passivation ability of the cyclic anions on both anode and cathode surfaces. This cyclic-anion-based electrolyte design strategy is also suitable for lithium and sodium-metal battery technologies.  相似文献   

20.
Spatial resolution defines the physical limit of microscopes for probing biomolecular localization and interactions in cells. Whereas synchrotron-based X-ray microscopy (XRM) represents a unique approach for imaging a whole cell with nanoscale resolution due to its intrinsic nanoscale resolution and great penetration ability, existing approaches to label biomolecules rely on the use of exogenous tags that are multi-step and error-prone. Here, we repurpose engineered peroxidases as genetically encoded X-ray-sensitive tags (GXET) for site-specific labeling of protein-of-interest in mammalian cells. We find that 3,3-diaminobenzidine (DAB) polymers that are in-situ catalytically formed by fusion-expressed peroxidases are visible under XRM. Using this new tag, we imaged the protein location associated with the alteration of a DNA-methylation pathway with an ultra-high resolution of 30 nanometers. Importantly, the excellent energy resolution of XRM enables multicolor imaging using different peroxidase tags. The development of GXET enlightens the way to nanoscopic imaging for biological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号