首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
After the significant discovery of the hole-doped nickelate compound Nd0.8Sr0.2NiO2, analyses of the electronic structure, orbital components, Fermi surfaces and band topology could be helpful to understand the mechanism of its superconductivity. Based on first-principle calculations, we find that Ni states contribute the largest Fermi surface. The states form an electron pocket at Γ, while 5dxy states form a relatively bigger electron pocket at A. These Fermi surfaces and symmetry characteristics can be reproduced by our two-band model, which consists of two elementary band representations: B1g@1a ⊕ A1g@1b. We find that there is a band inversion near A, giving rise to a pair of Dirac points along M-A below the Fermi level upon including spin-orbit coupling. Furthermore, we perform density functional theory based Gutzwiller (DFT+Gutzwiller) calculations to treat the strong correlation effect of Ni 3d orbitals. In particular, the bandwidth of has been renormalized largely. After the renormalization of the correlated bands, the Ni 3dxy states and the Dirac points become very close to the Fermi level. Thus, a hole pocket at A could be introduced by hole doping, which may be related to the observed sign change of the Hall coefficient. By introducing an additional Ni 3dxy orbital, the hole-pocket band and the band inversion can be captured in our modified model. Besides, the nontrivial band topology in the ferromagnetic two-layer compound La3Ni2O6 is discussed and the band inversion is associated with Ni and La 5dxy orbitals.  相似文献   

2.
The quantum Hall effect (QHE) with quantized Hall resistance of h/νe2 started the research on topological quantum states and laid the foundation of topology in physics. Since then, Haldane proposed the QHE without Landau levels, showing nonzero Chern number |C| = 1, which has been experimentally observed at relatively low temperatures. For emerging physics and low-power-consumption electronics, the key issues are how to increase the working temperature and realize high Chern numbers (C > 1). Here, we report the experimental discovery of high-Chern-number QHE (C = 2) without Landau levels and C = 1 Chern insulator state displaying a nearly quantized Hall resistance plateau above the Néel temperature in MnBi2Te4 devices. Our observations provide a new perspective on topological matter and open new avenues for exploration of exotic topological quantum states and topological phase transitions at higher temperatures.  相似文献   

3.
We review recent progress in the exploration of topological quantum states of matter in iron-based superconductors. In particular, we focus on the non-trivial topology existing in the band structures and superconducting states of iron’s 3d orbitals. The basic concepts, models, materials and experimental results are reviewed. The natural integration between topology and high-temperature superconductivity in iron-based superconductors provides great opportunities to study topological superconductivity and Majorana modes at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号