首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
针对函数优化的非线性特点,在标准粒子群优化算法的基础上,提出了一种带自适应变异的粒子群优化算法.该算法对惯性权值进行参数设计,建立非线性递减策略曲线模型,通过设置校准系数,改变惯性权值的曲线变化率,使其随迭代过程进行自适应变化.通过在迭代初期选取较大的惯性权值,增强算法的局部寻优能力,加快算法收敛速度,而在迭代后期选取较小的惯性权值,提升算法的全局搜索性能.同时,在算法中引入变异机制,增加种群的多样性,从而更好地提升算法由局部到全局的开放式搜索能力.通过选择基准测试函数对几种算法进行性能测试,证明改进算法收敛速度快、精度高,总体性能优于对比算法.  相似文献   

2.
针对二进制粒子群算法(BPSO)具有过早收敛的缺陷,在粒子位置更新后提出变异概率自适应从大到小的变异操作。 同时对算法惯性权重参数采用递增的设置方案,从而得到一种自适应变异BPSO 算法(AMBPSO),将其应用于特征选择问题。 实验结果表明,提出的新算法前期具有较强的全局搜索能力,后期具有较强的局部搜索能力,能使平均选择特征数量最多从27.6 个减少到20.2 个,平均分类准确率最多从91.346%提升到94.135%。  相似文献   

3.
为了克服传统粒子群算法(Pso)的早熟和局部最优问题,通过分析基于惯性权重的粒子群优化在粒子寻优过程中的可行性,提出了一种变惯性权重的改进PSo算法,并对经典的测试函数进行TN试。实验结果证明,与传统PSO算法以及基于惯性权重的PSO相比,改进算法的寻优效果较好,全局搜索能力有显著提高,并能有效地避免早熟收敛问题。  相似文献   

4.
为了改善传统粒子群优化算法过早陷入局部最优解的缺点,进一步增强算法收敛性,通过使用一定范围内邻域最好位置lBest代替自身历史最好位置pBest进行速度与位置更新,以增强粒子跨邻域学习能力。使用整个群体中最好位置gBest进行速度与位置更新,可增强算法收敛性,且具有较好的全局搜索能力。在8个不同的单峰和多峰函数上系统地对3种算法进行测试与比较,实验结果表明,提出的跨邻域学习改进粒子群优化算法可避免粒子群陷入局部最优解,求解精度与算法收敛性都提升了15%以上。  相似文献   

5.
动态自适应粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群算法存在局部最优,易陷入局部最小值的问题,提出了一种基于早熟收敛程度的惯性权重的评价方法,来动态调整惯性权重的自适应粒子群优化算法DAPSO(Dynamic Adaptive Particle Swarm Optimization),通过仿真并于其它算法相比较,验证了算法的有效性。  相似文献   

6.
为了解决标准粒子群优化算法(SPSO)不能适应复杂非线性优化过程的问题,提出了一种动态改变惯性权重的快速自适应粒子群优化算法(QAPSO),直接利用群粒子的位置分布情况控制粒子飞行的惯性权重,借助于个体最优位置和全局最优位置的平均作用避免粒子陷入局部最优。通过多个基准函数仿真结果表明,在不引入额外设计及增加实现复杂度的前提下,相对于SPOS等经典算法,QAPSO在收敛速度、最优解精度等方面获得了大幅提升,尤其对于多峰函数效果更明显。  相似文献   

7.
为了克服粒子群算法易发生早熟收敛、后期迭代速度较慢、易陷入局部最优的缺点,提出了一种改进的粒子群算法。该算法采用非线性动态自适应的更新权重,进一步提高收敛速度;通过引入差分进化算法中的交叉算子,以提高算法的全局探索能力,利用差分进化算法的变异策略产生候选解,克服种群多样性的下降,以跳出局部最优。利用该算法对2个测试函数进行寻优,仿真结果表明,文章提出的算法是一种收敛速度快、收敛精度高的全局寻优算法。  相似文献   

8.
针对粒子群优化算法的早熟收敛和进化后期收敛速度慢等问题,提出了权均值粒子群优化算法。通过在"认知"部分和"社会"部分加入随机权值更新粒子的飞行速度,使粒子能够很快地收敛到全局最优点。典型函数的仿真结果表明,该算法不仅具有较好的全局收敛性能和较快的收敛速度,而且有效地避免了早熟收敛问题。  相似文献   

9.
粒子群优化算法及其参数设置的研究   总被引:1,自引:0,他引:1  
文章介绍了粒子群优化算法的基本原理,分析了其特点,并利用经典统计分析中的方差分析方法,分析了粒群算法中的惯性权值、加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置,最后对其未来的研究提出了一些建议.  相似文献   

10.
通过引入变异算子对粒子群优化(PSO)算法进行改进,能很好克服粒子群的早熟收敛问题.将该改进的算法用到无限冲激响应(IIR)数字滤波器的设计,具有寻优速度快,设计精度高,自适应能力强等优点.  相似文献   

11.
在对标准微粒群算法(PSO)分析的基础上,提出了一种并行微粒群算法(PPSO)。文章详细介绍了该并行算法的流程,它改变了原来子种群之间周期性的通讯,而采用即时更新最优值的方法。仿真结果表明,PPSO在收敛速度和达标率方面有显著的优越性。  相似文献   

12.
提出一种与Powell算法相结合的新型改进微粒群算法——Powell-PSO.改进算法将粒子的搜索过程分为两阶段,第一阶段,将标准微粒群算法的速度公式加以改进进行搜索;第二阶段,将第一阶段的最后一代粒子作为Powell算法的初始点,让Powell算法与PSO算法交替进行.这样既克服了微粒群算法陷入局优的缺点,也大大提高了算法的求解精度,同时提高了收敛速度并保持了微粒的多样性.仿真结果表明:与标准微粒群算法相比,Powell-PSO具有较高求解精度和较强寻优能力,并且不论是对单峰还是多峰函数都能取得较好的优化效果.  相似文献   

13.
PID控制是典型的工业控制,其核心内容是PID参数优化。为解决参数优化时不能确保得到最佳性能且耗时问题,通过改进粒子群算法学习因子,研究基于相等随机因子粒子群算法的PID参数优化,将其与标准的粒子群算法及迭代次数线性变化的学习因子进行比较。仿真结果表明,该算法性能指标tr、ts、δ%分别为1.782、3.285、14.07%,两种对比算法的tr、ts、δ%分别为1.804、4.825、24.33%和1.802、4.135、16.56%,改进算法提高了PID参数的稳定性、收敛速度和搜索精度,性能指标更优。  相似文献   

14.
文章提出了一种改进的离散型粒子群优化算法,该算法重新定义粒子群优化算法的速度和位置公式,使其适用于离散问题.将该算法应用到典型的组合优化问题(0-1背包问题)的求解中,仿真实验表明了该算法的有效性.  相似文献   

15.
标准粒子群优化算法对空间所有区域等概率搜索,降低了算法效率。借鉴遗传算法的思想,本文提出一种带随机选择机制的改进粒子群优化算法。该算法将适应值选择和粒子状态更新方程结合起来,通过赌轮算法选择机制使得粒子在适应值较小的区域尽可能的降低搜索概率,在最优解可能区域尽可能加大搜索强度,从而提高算法搜索效率。通过标准进化计算测试函数测试,实验结果表明对于复杂优化问题该算法优于标准粒子群优化算法和遗传算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号