首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

2.
柯西不等式为:(a1b1 a2b2 … anbn)2≤(a21 a22 … a2n)(b21 b22十… b2n).其中ai,bi∈R(i=1,2,…,n).当且仅当a1/b1=a2/b2=…=an/bn时取"=",(约定ai=0时,bi=0,i=1,2,…,n).对于许多不等式问题,若善于运用柯西不等式及其等价形式,则往往会使一些棘手的问题变得简单明了.关键是构造适合不等式的条件,并能根据问题探索其等价形式.  相似文献   

3.
《数学通报》1023号问题是: 设ai∈R,bi∈R ,i=1,2,…,n,则当且仅当a1/b1=a2/b2=…=an/bn时,取“=”号. 本文将利用不等式(I)解一类推广问题.1求数和整式的最值 例1 已知x 2y 3z 4u 5v=30,求w=x2 2y2 3z2 4u2 5v2的最小值(60).(《数学通报》522号问题) 推广已知x1,x2,… xn∈R ,且x1 2x2  相似文献   

4.
本文讨论了n个正整数的和与积相等的一个必要条件,并证明了两个与素数、合数有关的结论. 结论1:若n(n≥2)个正整数a1,a2,…,an满足条件n∑i=1ai=n∏i=1ai,则ai≤n(i=1,2,…,n). 证明:(1)当n=2时,a1·a2-(a1+a2)=(a1-1)·(a2-1)-1≥0,当且仅当a1=a2=2时等号成立,故a1·a2=(a1+a2)时a1≤2,a2≤2,符合结论1. (2)当n≥3时,设a1≤a2≤…≤an.令a1=a2=…=an-2=1,an-1=2,an=n,则n∑i=1ai=n∏i=1ai=2n.此时ai≤n(i=1,2,…,n). 又设存在n(n≥2)个正整数b1,b2,…,bn满足条件1≤b1≤b2≤…≤bn-1≤bn,bn>n,且n∑i=1bi=n∏i=1bi.不妨令bi=1+ti(i=1,2,…,n-1,ti∈N),bn=n+tn(n∈N+).  相似文献   

5.
柯西不等式:设a1,a2,…,an,b1,b2,…,bn∈R,则(a12+a22+…+a2n)(b12+b22+…+b2n)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.柯西不等式具有对称和谐的结构特征,应用关键在于构造两组数ai,bi(i=1,2,…,n),进行合理的变形,找准解  相似文献   

6.
柯西不等式 设a1,a2,…,an,b1,b2,…,bn∈R,则(a1^2;+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)≥(a1b1+a2b2+…+anbn),当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.  相似文献   

7.
设a1,a2,a3,…,an;b1,b2,b3,…,bn是任意两组实数,则有((n∑i=1)aibi)2≤((n∑i=1)ai2)·((n∑i=1)bi2)当且仅当a1/b1=a2/b2=…=an/bn时,取"="号,这就是柯西不等式.  相似文献   

8.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

9.
彭光焰 《中学理科》2007,(12):10-12
恰当地应用好向量和导数,许多最值问题便迎刃而解,并且利用向量和导数来求最值,容易被学生接受.为了便于比较.一、用|a||b|≥a.b求最值例1已知x,y,z∈R ,且x y z=1,求x1 4y z9的最小值.解:令a=(1x,2y,3z),b=(x,y,z),则|a|2=1x 4y 9z,|b|2=1,(a.b)2=(1 2 3)2=36.由|a|2|b|2≥(a.b)2得,1x 4y 9z≥36,当且仅当1x=2y=3z时等号成立,即x=16,y=31,z=21.∴1x 4y 9z的最小值为36.例2已知ai,bi∈R ,且∑ni=1ai=∑ni=1bi=1,求a1a 12b1 a2a 22b2 … ana 2nbn的最小值.解析:令p=(a1a1 b1,aa2 2b2,…,anan bn,q=(a1 b1,a2 b2,…,an bn),则|p|2=a1a 21b1 a…  相似文献   

10.
题已知:ai,bi∈R+,(i=1,2,3,…),求证Σaibi/aibi≤Σai·Σbi/Σ(ai+bi). 证法1 柯西不等式因为∑aibi/ai+bi=∑(ai-ai2/ai+bi) =∑ai-∑ai2/ai+bi,根据柯西不等式∑Mi2/ni≥(Σmi)2/Σni得  相似文献   

11.
设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a12+a22+…+a2n)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.  相似文献   

12.
设ai和bi(i=1,2,…,n)都是实数,则(a12 a22 … a2n)(b12 b22 … b2n)≥(a1b1 a2b2 … anbn)2(1)(1)当且仅当ai=kbi(i=1,2,…n)时成立等号,这就是通常所说的哥西不等式.由该不等式很容易得到一个推,实际上,在不等式(1)中,令ai=xiyi,bi=yi(i=1,2…n)得:x12y1 xy222 … yx2nn(y1 y2 … yn)≥(x1 x2 … xn)2xy121 yx222 … yx2nn≥(x1 x2 … xn)2y1 y2 … yn(2)我们把不等式(2)称为哥西不等式推广即:设xi∈R,yj∈R (i=1,2,…,n),则yx121 yx222 … yx2nn≥(xy11 xy22 …… xynn)2,当且仅当xy11=yx22=…=yxnn时成立等号.哥西不等式推广在处理…  相似文献   

13.
柯西不等式 设a1,a2,…,an,b1,b2,…,bn均是实数,则有 (a1b1 a2b2 … anbn)2 ≤(a12 a22 … an2)(b12 b22 … bn2)等号当且仅当ai=λbi(λ为常数,i=1,2,…,n)时成立. 向量形式 设n维向量α(a1,a2,…,an),β(b1,b2,…,bn),则有 α·β≤|α|·|β|,当且仅当α∥β时取等号. 推论1 设a1,a2,…,an,b1,b2,…,bn均是实数,则有(a12 a22 … an2)~(1/2) (b12 b22 … bn2)~(1/2)  相似文献   

14.
本文将柯西不等式:设ai、bi∈R(i=1,2,…,n),则(n∑i=1aibi)2≤(n∑i=1a2i)(n∑i=1b2i).  相似文献   

15.
设两个实数数列{an}、{bn}: (1) 若a1≤a2≤…≤an, b1≤b2≤…≤bn, 则(1)/(n)∑ni=1aibi≥((1)/(n)∑ni=1ai)((1)/(n)∑ni=1bi);  相似文献   

16.
文[1]给出了如下定理及证明: 定理1设ai∈R ,n∑I=1ai=s,k∈N,k≥2,则有n∑I=1 aki/s-ai≥sk-1/(n-1)·nk-2.(1)其中等号当且仅当a1=a2=…=an时成立.  相似文献   

17.
定理 设ai,bi∈R+,i =1 ,2 ,… ,n .m ,n∈N ,∑bmi =∑ni=1bmi =1 ,p =mm +n,则∑ aibni≥ (∑api) 1p.①证明 :①等价于∑api/ (∑ aibni) p=∑ (ai∑ai/bni) p≤ 1 .②记Ai=ai/bni,则②的中间式等于∑ (Aibni∑Ai) p=∑ [Ami(bmi) n(∑Ai) m]1m +n≤∑ (mAi∑Ai+nbmi) / (m +n) =m +n∑bmim +n =1 .等式当且仅当 Ai∑Ai=bmi(i=1 ,2 ,… ,n) ,即 a1bm +n1=… =anbm +nn时成立 .局部对称权方和不等式@石长伟$陕西省西安市大华中学1 杨克昌.权方和不等式.数学通讯,1982,6…  相似文献   

18.
柯西不等式:对于任意实数ai,bi(i=1,2,…,n)有 (a1b1 a2b2 … anbn)2≤(a12 a22 … an2)(b12 b22 … bn2),当且仅当ai=kbi(k为常数)时成立. 柯西不等式揭示了任意两组实数积之和的平方与平方和之积间的大小关系,应用十分广泛.下面以近十年来的“希望杯”试题为例,供同学们参考.  相似文献   

19.
题目:设a、b、c∈R ,且a b c=1,则(a2/a b b2/b c c2/c a≥1/2.) 命题若ai∈R (i=1,2,…,n),且a1 a2 … an=M,则  相似文献   

20.
构造函数解决与不等式相关问题是很常见的,但通常都是构造单调函数,并利用其单调性来完成解答.本文介绍一种新的构造方法,它不是利用函数的单调性,而是应用函数值在其变量取值范围内有确定符号来解题.下面举例来加以说明.例1已知a1,a2,…,an,b1,b2,…,bn∈[1,2],且∑ni=1ai2=∑ni=1bi2.求证:∑ni=1ai3bi≤1107∑i=n1bi2.证明:构造函数f(x)=(x-12)(x-2)(x+25),则当21≤x≤2时,f(x)≤0故x3-2101x2+52≤0,即x3≤2101x2-52.又21≤abii≤2,所以abi33i≤1210ba2ii2-52,所以ab3ii≤2101ai3-25bi2.故∑ni=1ai3bi≤2110∑i=n1a2i-52∑i=n1bi2=2101∑i…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号