首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现行高中教材指出:2kπ(k∈Z,k≠0)是正弦函数 f(x)=sinx 的周期,其最小正周期为2π,且略去证明.事实上,求正弦函数的最小正周期并非难事,本文介绍一个求三角函数最小正周期的简单有效的方法:先在函数的定义域中找出一个适当的 x_0通过方程 f(T x_0)=f(x_0)解出 T;然后对 T 的每一个正值(由小到大)验证f(T x)=f(x)是否对定义域中的任意 x 的值都成立,即分别检验 T 是否为其周期.显然第一个是周期的 T 的值就是所给函数的最小正周期.下面举例说明:  相似文献   

2.
文[1]在讨论周期函数有关最小正周期的性质时特别强调:若函数f(x)有最小正周期t,则f(x)的任何周期T^*一定是t的整数倍,即存在k(k∈Z,k≠0),使T^*=kt.  相似文献   

3.
两函数f1(x),f2(x)的最小正周期分别为T1,T2,当(T1)/(T2)为有理数时,和函数f(x)=f1(x) f2(x)的最小正周期是什么?  相似文献   

4.
我们熟悉了g(x) =Asin(ωx φ) B的最小正周期T =2π|ω|,那么|g(x) |的最小正周期呢 ?定理 1 已知f(x) =|Asin(ωx φ) B| ,A、B、ω、φ为常数且A、ω≠ 0 .1.1 若B =0 ,则f(x)最小正周期为T =π|ω|;1.2 若B≠ 0 ,则f(x)最小正周期为T =2π|ω|.定理 2 已知f(x) =|Acos(ωx φ) B| ,A、B、ω、φ为常数且A、ω≠ 0 .2 .1 若B =0 ,则f(x)最小正周期为T =π|ω|;2 .2 若B≠ 0 ,则f(x)最小正周期为T =2π|ω|.定理 3 已知f(x) =|Atan(ωx φ) B| ,A、B、ω、φ为常数且A、ω≠ 0 ,则f(x)最…  相似文献   

5.
一、一个周期问题若T是f (x)、g(x)的周期,则 T 也是f(x)±g(x)的周期.这是容易证明的定理,也是同学们熟悉的性质.然而,把周期换成最小正周期,结论就未必成立了,即是说若T是f(x)、g(x)的最小正周期.那么,T就不一定是f (x)±g(x)的最小正周期.譬如 sin4x,cos2x 容易断定它们都以π为最小正周期,但 y= sin4x cos2x 的最小正周期是多少? 却是一个值得探讨的事,2004 年全国高考正是以此疑问设置了一道选择题,现介绍如下:二、一道高考题及快速解法函数y=sin4x cos2x的最小正周期为(  )(A)π4 (B)π2 (C)π (D)2π快速解法,设f(x)=s…  相似文献   

6.
有关周期函数的最小正周期的存在、求法的问题探讨不少。本文借助于周期函数的分析性质,确定其最小正周期。定理1 设f(x)为非常数的连续周期函数,T是其任一个正周期,若在[0,T]内函数最大值的点(最小值的点)的个数为m,那么,1)当m为质数时,其最小正周期T_0为T/M 或T;2)当m为合数时,其最小正周期T_0为T/K,其中K是m的某个约数。[注] 证明:因为f(x)是非常数连续函数,因此f(x)必定存有最小正周期,不妨令作T_0,而T是f(x)的任一个正同期,且在[0,T]  相似文献   

7.
中学生在数学练习中 ,有些问题稍不留意 ,就会出现错误 ,如何快捷有效地避免这种无形错误 ,本文作些分析探讨 1 关于函数的最小正周期例 1:求函数f (x) =2tanx1-tan2x的最小正周期错解 :原函数式化简为f (x) =tan2x ,所以周期为 π2正解 :显然原函数的定义域为 {x︱x≠kπ π2 且x≠ kπ2 π4 (k∈Z) } ,化简后 ,定义域为{x︱x≠kπ π4 (k∈Z) } ,定义域扩大了 ,所以周期未必相同 ,那怎样求周期呢 ,一般参考书的方法是 :首先作出y =tan2x的图象 ,如图 1:图 1  原函数的图象 ,只是去掉x≠kπ π2 (k∈Z)所对应的点 ,从去掉的几个点看 ,原函数的周期为π 这种方法虽然可以求出周期 ,但图形要画足够“宽” ,才能看出 ,不易把握 现在我们来看 ,有什么规律 ,不画出图象 ,就可直接求出周期 由函数的周期的定义容易证明 ,下面结论 :结论 1:若函数f (x)化简后的函数为f1(x) ,f1(x) ,的最小正周期为T1,函数f (x)的间断点的最小正周期为T2 ,则f (x)的最小正周期为T1,T2 的最小公倍...  相似文献   

8.
一、利用公式求周期 (1)函数y=2sin(x/2+π/3)的最小正周期T=_____; (2)已知)y=an(πx/4+π/3)的最小正周期T=_____; (3)函数f(x)=-sin2x的最小正周期为___; (4)y=sin2xcos2x的最小正周期是____; (5)函数y=sinx-cosx懿的最小正周期是____; (6)甬数f(x)=cos2x-2√3 sinxcosx+1的最小正周期是____;  相似文献   

9.
本文将在高中数学教材的基础上,对周期函数的定义域,最小正周期以及周期函数的复合进行一些发掘,以期抛砖引玉。定义1 函数y=f(x)是定义在数集D上的函数。如果存在非零常数T,使得对任意x∈D,总有f(x T)=f(x),我们就把y=f(x)叫作D上的周期函数,T叫这个函数的周期。  相似文献   

10.
《数理天地》高中版99年6期发表的《速解一类周期题》一文主张,对于形如f(x)=f(x)+f2(x)的函数的周期,可以利用下列结论快速求解:若f1(x)的周期是T1,f2(x)的周期是T2,则函数f(x)=f1(x)+f2(x)的周期是T1、T2的最小公倍数(以上指的均是最小正周期),可惜,这个结论在不少情况下是失败的,请看.  相似文献   

11.
众知,周期函数的内容丰富而广泛,对它的周期判定,有关最小正周期的探讨均有论述,本文论述周期函数及其导函数的周期是否相同问题。周期函数的导函数是周期函数这是众知的,但它们的周期是否相同呢?[注]。定理1 设f(x)是连续周期函数,最小正周期为T,若其原函数F(x)满足F(0)=F(T),则F(x)也是以T为最小正周期的周期函数。  相似文献   

12.
[定理1] 设函数f(x)(x∈R)以w为最小正周期,它的图象有对称轴x=c,则存在实数a、b∈(0,w],a≠b,使得x=a,x=b也是它的图象的对称轴。证:对实数c和正数w,总可以找到一个整数k,使得kw<0≤(k 1)w,令a=-kw c,则有a∈(0,w]。∵x=c是对称轴,∴对任意x∈R,有f(c x)≡f(c-x),又w是周期,∴f(kw x)≡f(x)(k∈Z)。从而对任意x∈R,f(a x)=f(-kw c x)=f(c x)=f(c-x)=f(kw a-x)=f(a-x)。  相似文献   

13.
在高中数学教学中,对于函数f(x)=sin x cosx的最小正周期的求法,总避开不提.问题的提法,多以选择题或是证明题的形式出现.如求证:f(x)=sin x cosx的最小正周期是2π.解题过程很简单:证明∵对任意的x∈R,都有f(x π2)=sin(x π2) cos(x π2)=cos x ?sin x=f(x).∴T=π2是函数f(x)=sin x cosx的周期.假设存在0相似文献   

14.
连续周期函数(常数函数除外)必有最小正周期,求出它的最小正周期是有实际意义的:其一,知道了周期函数的最小正周期,就可把握住它的所有周期(见下面性质3);其二,知道了周期函数的最小正周期,就可在小的取值范围内研究函数的性态。对于函数f(x),其定义域为M.如果存在一个非零常数T,x±T∈M,并且对于  相似文献   

15.
怎样确定可化为f(x)=Asinωx,f(x)=acosωx,f(x)=Atgωx,f(x)=Actgωx(其中A≠0,ω>0,x∈M R)的函数的周期,是学生们比较困惑的问题,对此笔者认为由周期函数的定义确定这类函数的周期,是值得重视的方法。 由周期函数定义域确定这类函数的周期,即根据现行教材中周期函数的定义“若存在非零常数T,使f(x T)=f(x)对定义域内的任意实数x都成立,则称f(x)是以T为周期的函数”中,以T为周期的函数f(x)的定义域M必定满足:“对任意的k∈Z,x kT与x同时在或同时不在M内,并且具有相同的形式”这一含义,布列含T的方程并求出T。 下面通过具体的例子说明。  相似文献   

16.
求函数数f(x)=sinmx conx的最小正周期是一件很有意义的事,在这里我们先假定都是有理数,在这一情况下,我们有如下命命题:设p_1、p_2、q_1、q_2都是正整数,且满足则函数这里(,)[,]分别表示两个整数的最大公约数和最小公倍数.证明:设f(x)有一个正周期T,不难知道f(-x)也有一个正周期周期T.不难验证:所以T也是sin(p_1x)/q1和cosp_2x/q_2的周期,这样T就是sin(p_1x)/q1和cosp_2x/q_2的最小正周期和的倍数.即存在正整数k_1和k_2使得下式成立:由此不难得出:从命题的已知条件及最大公约数的定义知:所以我们可以得出这里Q是正整数…  相似文献   

17.
一、周期函数的定义设函数y=f(x),(x∈D),如果存在非零常数T,使得对任何x∈D都有f(x+T)=f(x),则函数f(x)为周期函数.非零常数T叫做y=f(x)的一个周期.如果所有的周期中存在一个最小的正数,那么这个最小正数就叫做y=f(x)的最小正周期.  相似文献   

18.
本刊92年第五期刊登了一篇题为“周期函数与其导函数的周期”的文章,该文证明了下述定理。定理非常值周期函数f(x)在R上有定义且连续,而f′(x)存在且可积,则f′(x)也为周期函数,并且f(x)与f′(x)有相同的周期。并举下例说明其应用。例设f(x)=x-2k,(2k≤r<2k+1) -x+2(k+1),k∈2 (2k+1≤x<2k+2) 则f(x)与f′(x)有相同的周期2。(见原文例3)。显然,上例中的f′(x)当x=k时,不存在,故上述例不满足定理之条件,故用上述定理得出其结果不妥。易见,条件“f′(x)存在且可积”是相当强的,以致于象f(x)=tgx这样常用的初等函数  相似文献   

19.
一、从函数的定义域中挖掘隐含条件例1:求函数f(x)=12-ttaannx2x的最小正周期.错解:∵f(x)=12-ttaannx2x=tan2x,∴f(x)的最小正周期是T=!2.错因:忽视了原函数的定义域,误认为原函数与y=tan2x是同一类函数.我们在研究函数性质的问题时,要树立“定义域优先”的意识.必要时,可以画出函数图象.化简两函数知:(1)f(x)=12-ttaannx2x的定义域是:{xx≠k!+!2,x≠k2!+!4,k∈Z};(2)f(x)=tan2x的定义域是:{xx≠k2!+!4,k∈Z}.可见,两函数的定义域不同,它们不是同一函数.只有在f(x)=tan2x的后面加注了x≠k!+!2(k∈Z)后它们才是同一函数.挖掘出这一隐…  相似文献   

20.
题:求函数f(二)一小正周期.。,l一tg艺二、:0气二~-甲一—一f一, 1十tg‘x的最解:‘:r,一、。,1一tg艺x、:J、汪j一J气二一~厂一二厂一少-一1 1十tg一x=5(eosZx)“一l 。_、,l·十cos4x~勺入— 乙一1 53一万cos仃十万··,.了(了’的最“、正周期是譬一今上面的结果是错误的,因为:如x一。时, _1一0、二~~~,,、,。一、、,J LU少一匕气了一万一不,‘一1一4;久幽狱J戈x)阴正义 1丫卜U域是{x{x任R且二半k二十粤,k任z},…f(0 乙不尤一2十粤) 乙无意义二,.f(。)共f(。十粤)二,. ‘是函数厂(x)的周期. 因这个函数的定义域是实数集中除去一些弧…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号