首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The problem of asymptotic stability of linear neutral systems with multiple delays is addressed in this article. Using the characteristic equation approach, new delay-independent stability criteria are derived in terms of the spectral radius of modulus matrices. The structure information of the system matrices are taken into consideration in the proposed stability criteria, thus the conservatism found in the literature can be significantly reduced. Simple examples are given to demonstrate the validity of the criteria proposed and to compare them with the existing ones.  相似文献   

3.
The asymptotic stability of linear neutral systems with a single delay is investigated in this article. Based on the characteristic equation, new algebraic criteria for the stability of the system are derived in terms of the spectral radius of corresponding modulus matrices. The significance of our new criteria is that it takes into consideration the structure information of the system matrices, thus reducing the conservatism found in the literature. Numerical examples are given to demonstrate the new stability criteria and to compare them with the previous results in the literature.  相似文献   

4.
This paper investigates the output feedback control for a class of stochastic nonlinear time delay systems based on dynamic gain technique. The nonlinear terms of the stochastic system satisfy linear growth condition on unmeasured state variables with the output dependent incremental rate, which makes the studied time delay stochastic system more general than the exiting results. Firstly, the full order dynamic gain observer is constructed. Then, the linear-like controller is designed without using recursive design method. Next, the stability analysis is given and a useful corollary is obtained. Finally, a simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper is concerned with the problem of delay-dependent guaranteed cost control for uncertain two-dimensional (2-D) state delay systems described by the Fornasini and Marchesini (FM) second state-space model. Given a scalar α∈(0,1), a sufficient condition for the existence of delay-dependent guaranteed cost controllers is given in terms of a linear matrix inequality (LMI) based on a summation inequality for 2-D discrete systems. A convex optimization problem is proposed to design a state feedback controller stabilizing the 2-D state delay system as well as achieving the least guaranteed cost for the resulting closed-loop system. Finally, the simulation example of thermal processes is given to illustrate the effectiveness of the proposed result.  相似文献   

6.
In this paper, the global exponential robust stability is investigated for Cohen-Grossberg neural network with time-varying delays and reaction-diffusion terms, this neural network contains time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. Neither the boundedness and differentiability on the activation functions nor the differentiability on the time-varying delays are assumed. By using general Halanay inequality and M-matrix theory, several new sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential robust stability of equilibrium point for Cohen-Grossberg neural network with time-varying delays and reaction-diffusion terms. Several previous results are improved and generalized, and three examples are given to show the effectiveness of the obtained results.  相似文献   

7.
8.
基于参数相关Lyapunov泛函不确定时滞系统的鲁棒稳定性   总被引:3,自引:0,他引:3  
研究了含多面体不确定性的时滞系统的鲁棒稳定性问题。利用参数相关的Lyapunov泛函,得到了基于LMI的时滞系统时滞相关的鲁棒稳定的充分条件。在该条件中不确定系统在多面体不同的顶点用不同的Lyapunov阵判断其稳定性,而已有的结果为在所有的顶点用一个共同Lyapunov阵分析。进一步,将确定系统稳定的最大时滞问题转化为求广义特征值的拟凸优化问题。最后数值例子说明了该方法有较小的保守性  相似文献   

9.
This study investigates the robust stability of the retarded type of interval fractional order plants with an interval time delay. To this end, the characteristic quasi-polynomial is divided into two terms. The first term is simply the denominator interval polynomial of the open loop system and the second term is the multiplication of the interval delay term in the numerator of the open loop system which is an interval polynomial. Each of these two terms of the characteristic quasi-polynomial makes their own value sets in the complex plane for a given frequency. In this paper, based on these two value sets and by using the zero exclusion principle, the robust stability of the closed loop system by applying a FOPID controller is analyzed. Finally, two numerical examples and an experimental verification are provided to demonstrate the effectiveness of the proposed method in the robust stabilization of fractional order plants with interval uncertainties and interval time delay.  相似文献   

10.
This paper investigates the problem for stability of neutral-type dynamical neural networks involving delay parameters. Different form the previously reported results, the states of the neurons involve multiple delays and time derivative of states of neurons include discrete time delays. The stability of such neural systems has not been given much attention in the past literature due to the difficulty of finding Lyapunov functionals which are suitable for stability analysis of this type of neural networks. This paper constructs a generalized Lyapunov functional by introducing new terms into the well-known Lyapunov functional that enables us to conduct a theoretical investigation into stability analysis of delayed neutral-type neural systems. Based on this modified novel Lyapunov functional, sufficient criteria are derived, which guarantee the existence, uniqueness and global asymptotic stability of the equilibrium point of the neutral-type neural networks with multiple delays in the states and discrete delays in the time derivative of the states. The applicability of the proposed stability conditions rely on testing two basic matrix properties. The constraints impose on the system matrices are determined by using nonsingular M-matrix condition, and the constraints imposed on the coefficients of the time derivative of the delayed state variables are derived by exploiting the vector-matrix norms. We also note that the obtained stability conditions have no involvement with the delay parameters and expressed in terms of nonlinear Lipschitz activation functions. We present a constructive numerical example for this class of neural networks to give a systematic procedure for determining the imposed conditions on the whole system parameters of the delayed neutral-type neural systems.  相似文献   

11.
This paper discusses PID controller tuning for integrating processes with varying time-delays. Most of the existing tuning rules for the first-order lag plus integrator plus delay (FOLIPD) processes that we mainly focus on have the same general structure, and the properties of these rules are discussed in conjunction with varying time-delays. The analysis leads to novel tuning rules, where the maximum amplitude of an arbitrarily varying time-delay can be given as a parameter, which makes the use of the rules attractive in several applications. We will also extend the analysis to integrating processes with second-order lag and apply the design guidelines for a networked control application. In addition, we propose a novel tuning method that optimizes the closed-loop performance with respect to certain robustness constraints while also providing robustness to delay variance via jitter margin maximization. Further, we develop new PID controller tuning rules for a wide range of processes based on the proposed method. The new tuning rules are discussed in detail and compared with some of the recently published results. The work was originally motivated by the need for robust but simultaneously well-performing PID parameters in an agricultural machine case process. We also demonstrate the superiority of the proposed tuning rules in the case process.  相似文献   

12.
The design of fixed-time scaled consensus protocol for multi-agent systems with input delay is developed in this article. First, by virtue of Artstein model reduction method, the time-delay system is converted into a delay-free one. Then, two novel controllers are designed such that the fixed-time scaled consensus of multi-agent systems can be realized for the undirected and directed topology, respectively. Sufficient conditions are derived to guarantee that all agents converge to the assigned ratios instead of the same value under any bounded input delay. Besides, an explicit estimate can be given for the uniform convergence time independent of the initial conditions. Moreover, it is proved that the convergence value of the system is not affected by the initial states of agents any more, but only related to initial states of the virtual agents set in advance. Finally, numerical simulations are given to demonstrate the feasibility of the proposed algorithms.  相似文献   

13.
This study considers the stability problem of a flexible-joint robot in case time delays are involved in the feedback loop. We assume in our analysis that the controller uses only position measurements. The single and multiple time-delay cases, are considered. By using some useful structural properties of the robot model, sufficient conditions for asymptotic (exponential) stability of the system under consideration have been established. An estimate to the system rate of convergence is given and a procedure for evaluating the region of attraction, is given.  相似文献   

14.
具有输入时滞的关联不确定大系统的分散鲁棒控制   总被引:4,自引:0,他引:4  
研究了一类同时具有输入时滞以及不确定参数的关联大系统的稳定性问题.基于所谓的还原法,给出一种新的状态反馈控制器的设计方法,这种方法的不同之处在于利用了时延的大小以及反馈控制的历史信息.根据Lyapunov稳定性理论得到了系统在控制器作用下稳定的充分条件,所有条件都化成可解的标准线性矩阵不等式(LMIs)形式.最后给出了一个数值例子,说明结果的可行性,并和一般无记忆的控制器相比较,说明建立的控制器有着更好的性能.  相似文献   

15.
This paper deals with the problem of non-fragile guaranteed cost control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are assumed to be time-varying and norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square for all admissible parameter uncertainties and the closed-loop cost function value is not more than a specified upper bound. A new sufficient condition for the existence of such controllers is presented based on the linear matrix inequality (LMI) approach. Then, a convex optimization problem is formulated to select the optimal guaranteed cost controller which minimizes the upper bound of the closed-loop cost function. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

16.
The method of identifying first order plus time delay transfer function model proposed for unstable systems by Ananth and Chidambaram [Closed loop identification to transfer function model for unstable systems, J. Franklin Inst. 336 (1999) 1055-1061] is modified to avoid the stability problems [Cheres, Parameter estimation of an unstable system with a PID controller in a closed loop configuration, J. Franklin Inst., 2005, accepted for publication] of the method. Two modifications are proposed. In the first modification of the method, the under-determined algebraic equations problem is converted into an optimization problem for calculation of the three parameters of the first order plus time delay (FOPTD) model. A simple method is given for the initial guess values of the model parameters. In the second approach, from the definition of Laplace transform of the output response, a third equation is formulated. The resulted three equations, in terms of the three parameters of the transfer function model, are then numerically solved. Simulation results are given for the second order plus time delay transfer function considered by Cheres 2005 [Parameter estimation of an unstable system with a PID controller in a closed loop configuration, J. Franklin Inst., 2005, accepted for publication]. The responses of the identified models with the same PID controllers are compared with that of the actual system. PID controllers are designed based on the identified models. The closed loop responses of the controllers on the original system are evaluated and compared. The present methods give better control performances.  相似文献   

17.
In this study, the stabilizability irrespective of the bounds of uncertain parameters and time delays is investigated for linear uncertain delay systems. For uncertain systems without delays, a linear time-varying or time-invariant uncertain system has been shown to be stabilizable independent of the bounds of uncertain variations if and only if the system has a particular geometric configuration called an antisymmetric stepwise configuration (ASC) or a generalized antisymmetric stepwise configuration (GASC), respectively. In this study, fundamental approaches to investigating the stabilizability of delay systems with specific uncertainty structures such as ASCs or GASCs are presented. For a class of 3-dimensional systems, it is shown here that if a linear time-varying or time-invariant uncertain delay system has an ASC or a GASC, respectively, then the system can be stabilized, however large the given bounds of delays and uncertain parameters might be.  相似文献   

18.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

19.
This paper aims to solve scaled consensus problem for general linear multiagent systems under denial-of-service (DoS) attacks. Firstly, we propose a new scaled disagreement vector and investigate its properties under switching and undirected graphs. Secondly, we establish sufficient conditions in terms of linear matrix inequalities in order to guarantee that the multiagent system achieves scaled consensus under DoS attacks. Contrary to most existing studies where DoS attacks on all the channels are same, in this note, we formulate the problem such that the adversary compromises each agent independently. Moreover, the distributed consensus protocol is investigated for networks with time-varying delay. Finally, two simulation examples are given to demonstrate effectiveness of the proposed design methodologies.  相似文献   

20.
This paper addresses the problem of robust stabilization for uncertain discrete-time singular large-scale systems with parameter uncertainties. The system under consideration is not necessarily regular. The parameter uncertainties are assumed to be time invariant, but norm-bounded. The purpose of the robust stabilization problem is to design state feedback controllers such that, for all admissible uncertainties, the closed-loop system is regular, causal and stable. In terms of strict LMIs, sufficient conditions for the solvability of the problem is presented, and the parameterization of desired state feedback controllers is also given. A numerical example is given to demonstrate the applicability of the proposed design approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号