首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early research experiences must be made available to all undergraduate students, including those at 2-yr institutions who account for nearly half of America''s college students. We report on barriers unique to 2-yr institutions that preclude the success of an early course-based undergraduate research experience (CURE). Using a randomized study design, we evaluated a CURE in equivalent introductory biology courses at a 4-yr institution and a 2-yr institution within the same geographic region. We found that these student populations developed dramatically different impressions of the experience. Students at the 4-yr institution enjoyed the CURE significantly more than the traditional labs. However, students at the 2-yr institution enjoyed the traditional labs significantly more, even though the CURE successfully produced targeted learning gains. On the basis of course evaluations, we enhanced instructor, student, and support staff training and reevaluated this CURE at a different campus of the same 2-yr institution. This time, the students reported that they enjoyed the research experience significantly more than the traditional labs. We conclude that early research experiences can succeed at 2-yr institutions, provided that a comprehensive implementation strategy targeting instructor, student, and support staff training is in place.  相似文献   

2.
Genome Consortium for Active Teaching: meeting the goals of BIO2010   总被引:2,自引:2,他引:0  
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students.  相似文献   

3.
The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the “vision” but lack research-based models and evidence needed to guide the “change.” To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students’ understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty–development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired “change.”
All members of the biology academic community should be committed to creating, using, assessing, and disseminating effective practices in teaching and learning and in building a true community of scholars. (American Association for the Advancement of Science [AAAS], 2011 , p. 49)
Realizing the “vision” in Vision and Change in Undergraduate Biology Education (Vision and Change; AAAS, 2011 ) is an enormous undertaking for the biology education community, and the scale and critical importance of this challenge prompts us to ask fundamental questions about widespread transformation of college biology teaching and learning. For example, Vision and Change reflects the consensus that active teaching enhances the learning of biology. However, what is known about widespread application of effective active-teaching pedagogy and how it may differ across institutional and classroom settings or with the depth of pedagogical understanding a biology faculty member may have? More broadly, what is the research base concerning higher education biology faculty–development programs, especially designs that lead to real change in classroom teaching? Has the develop-and-disseminate approach favored by the National Science Foundation''s (NSF) Division of Undergraduate Education (Dancy and Henderson, 2007 ) been generally effective? Can we directly apply outcomes from faculty-development programs in other science, technology, engineering, and mathematics (STEM) disciplines or is teaching college biology unique in important ways? In other words, if we intend to use Vision and Change as the basis for widespread transformation of biology instruction, is there a good deal of scholarly literature about how to help faculty make the endorsed changes or is this research base lacking?In the context of Vision and Change, in this essay I focus on a few key topics relevant to broad-scale faculty development, highlighting the extent and quality of the research base for it. My intention is to reveal numerous issues that may well inhibit forward momentum toward real transformation of college-level biology teaching and learning. Some are quite fundamental, such as ongoing dependence on less reliable assessment approaches for professional-development programs and mixed success of active-learning pedagogy by broad populations of biology faculty. I also offer specific suggestions to improve and build on identified issues.At the center of my inquiry is the faculty member. Following the definition used by the Professional and Organizational Development Network in Higher Education (www.podnetwork.org), I use “faculty development” to indicate programs that emphasize the individual faculty member as teacher (e.g., his or her skill in the classroom), scholar/professional (publishing, college/university service), and person (time constraints, self-confidence). Of course, faculty members work within particular departments and institutions, and these environments are clearly critical as well (Stark et al., 2002 ). Consequently, in addition to focusing on the individual, faculty-development programs may also consider organizational structure (such as administrators and criteria for reappointment and tenure) and instructional development (the overall curriculum, who teaches particular courses). In fact, Diamond (2002) emphasizes that the three areas of effort (individual, organizational, instructional) should complement one another in faculty-development programs. The scope of the numerous factors impacting higher education biology instruction is a realistic reminder about the complexity and challenge of the second half of the Vision and Change endeavor.This essay is organized around specific topics meant to be representative and to illustrate the state of the art of widespread (beyond a limited number of courses and institutions) professional development for biology faculty. The first two sections focus on active teaching and biology students’ conceptual understanding, respectively. The third section concerns important elements that have been identified as critical for effective STEM faculty-development programs.  相似文献   

4.
In response to the American Association for the Advancement of Science''s Vision and Change in Undergraduate Biology Education initiative, we infused authentic, plant-based research into majors’ courses at a public liberal arts university. Faculty members designed a financially sustainable pedagogical approach, utilizing vertically integrated curricular modules based on undergraduate researchers’ field and laboratory projects. Our goals were to 1) teach botanical concepts, from cells to ecosystems; 2) strengthen competencies in statistical analysis and scientific writing; 3) pique plant science interest; and 4) allow all undergraduates to contribute to genuine research. Our series of inquiry-centered exercises mitigated potential faculty barriers to adopting research-rich curricula, facilitating teaching/research balance by gathering publishable scholarly data during laboratory class periods. Student competencies were assessed with pre- and postcourse quizzes and rubric-graded papers, and attitudes were evaluated with pre- and postcourse surveys. Our revised curriculum increased students’ knowledge and awareness of plant science topics, improved scientific writing, enhanced statistical knowledge, and boosted interest in conducting research. More than 300 classroom students have participated in our program, and data generated from these modules’ assessment allowed faculty and students to present 28 contributed talks or posters and publish three papers in 4 yr. Future steps include analyzing the effects of repeated module exposure on student learning and creating a regional consortium to increase our project''s pedagogical impact.  相似文献   

5.
The Course-Based Undergraduate Research Experiences Network (CUREnet) was initiated in 2012 with funding from the National Science Foundation program for Research Coordination Networks in Undergraduate Biology Education. CUREnet aims to address topics, problems, and opportunities inherent to integrating research experiences into undergraduate courses. During CUREnet meetings and discussions, it became apparent that there is need for a clear definition of what constitutes a CURE and systematic exploration of what makes CUREs meaningful in terms of student learning. Thus, we assembled a small working group of people with expertise in CURE instruction and assessment to: 1) draft an operational definition of a CURE, with the aim of defining what makes a laboratory course or project a “research experience”; 2) summarize research on CUREs, as well as findings from studies of undergraduate research internships that would be useful for thinking about how students are influenced by participating in CUREs; and 3) identify areas of greatest need with respect to CURE assessment, and directions for future research on and evaluation of CUREs. This report summarizes the outcomes and recommendations of this meeting.
Students can work with the same data at the same time and with the same tools as research scientists.iPlant Education, Outreach & Training Group (2008, personal communication)
  相似文献   

6.
Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers'' skills in inquiry-based science instruction. Here, we describe some of the program''s successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children''s science learning abilities to express more mature, positive views.  相似文献   

7.
This article introduces the author''s emerging new paradigm (“perinatal participation”) that re-imagines postpartum support by helping expectant parents have more peace of mind, confidence, self-compassion, and emotional wellbeing over the course of their perinatal journeys, with special focus on feeling more prepared for all that happens after baby arrives. The author''s work rests on the shoulders of her 1992 book, Mothering the New Mother: Women''s Feelings and Needs After Childbirth. Perceiving a new urgent need to support expectant parents three decades later (the need to alleviate the high stress levels in expectant parents she was talking to) the author explored filtering the expectant and new parent''s experience through what she calls a “peace-of-mind lens.”  相似文献   

8.
Numerous studies are demonstrating that engaging undergraduate students in original research can improve their achievement in the science, technology, engineering, and mathematics (STEM) fields and increase the likelihood that some of them will decide to pursue careers in these disciplines. Associated with this increased prominence of research in the undergraduate curriculum are greater expectations from funders, colleges, and universities that faculty mentors will help those students, along with their graduate students and postdoctoral fellows, develop an understanding and sense of personal and collective obligation for responsible conduct of science (RCS). This Feature describes an ongoing National Research Council (NRC) project and a recent report about educating faculty members in culturally diverse settings (Middle East/North Africa and Asia) to employ active-learning strategies to engage their students and colleagues deeply in issues related to RCS. The NRC report describes the first phase of this project, which took place in Aqaba and Amman, Jordan, in September 2012 and April 2013, respectively. Here we highlight the findings from that report and our subsequent experience with a similar interactive institute in Kuala Lumpur, Malaysia. Our work provides insights and perspectives for faculty members in the United States as they engage undergraduate and graduate students, as well as postdoctoral fellows, to help them better understand the intricacies of and connections among various components of RCS. Further, our experiences can provide insights for those who may wish to establish “train-the-trainer” programs at their home institutions.  相似文献   

9.
Molecular life science is one of the fastest-growing fields of scientific and technical innovation, and biotechnology has profound effects on many aspects of daily life—often with deep, ethical dimensions. At the same time, the content is inherently complex, highly abstract, and deeply rooted in diverse disciplines ranging from “pure sciences,” such as math, chemistry, and physics, through “applied sciences,” such as medicine and agriculture, to subjects that are traditionally within the remit of humanities, notably philosophy and ethics. Together, these features pose diverse, important, and exciting challenges for tomorrow''s teachers and educational establishments. With backgrounds in molecular life science research and secondary life science teaching, we (Tibell and Rundgren, respectively) bring different experiences, perspectives, concerns, and awareness of these issues. Taking the nature of the discipline as a starting point, we highlight important facets of molecular life science that are both characteristic of the domain and challenging for learning and education. Of these challenges, we focus most detail on content, reasoning difficulties, and communication issues. We also discuss implications for education research and teaching in the molecular life sciences.  相似文献   

10.
This article reports original research that describes new mothers'' experiences of birth and maternity care. Qualitative data were collected through a survey on birth satisfaction, which included space for women to provide comments about their birth and experience of care. Thirty-nine women provided comments that were analyzed using the thematic analysis method. Two themes emerged from the women''s experiences: “Unexpected birth processes: expectations and reality” and “Coping with birth: the role of health-care staff.” Participants described unexpected birthing processes, their experiences of care, and maternity care staff''s contributions to coping with birth. Implications for practice for childbirth professionals include promotion of physiologic birth, respectful person-centered care during all phases of perinatal care, and the value of childbirth preparation.  相似文献   

11.
Role of the Undergraduate Student Research Assistant in the New Millennium   总被引:1,自引:0,他引:1  
In this study, we analyze the contribution of the undergraduate student who participates in the process of generating scientific data and developing a research project using Brazilian research as an example. Historically, undergraduate students have performed the critical role of research assistants in developing countries. This aspect has been underappreciated as a means of generating scientific data in Brazilian research facilities. Brazilian educational institutions are facing major age-related generational changes among the science faculty within the next 5–10 yr. A lack of adequate support for graduate students leads to a concern that undergraduates will not be interested in choosing research assistant programs and, subsequently, academic research careers. To remedy this situation it is important to focus on ways to encourage new research careers and enhance university–industry collaborations.  相似文献   

12.
A policy of adding a new rank to the faculty career ladder was implemented in Taiwan in 1994. It was believed that structural changes of the incentive system would change faculty research behavior. This paper explores the question: Who are motivated to perform research by the desire for promotion? A mail survey investigating Taiwanese faculty members was conducted. The results show that the answer varies by different performance measures. Those who publish for the promotion reward tend also to be motivated by other external and internal rewards. Among all rewards, the most important to many faculty is an increase in personal income. Holding one's valence score on promotion constant, faculty with better research performance tends to be those who possess doctoral degrees. The results show that faculty in public institutions perform better than their private-institution counterparts, regardless of promotion valence. Finally, alternative policies to improve faculty research performance are recommended.  相似文献   

13.
This biography of the physicist and science educator Frank Oppenheimer uses his crowning achievement, San Francisco''s Exploratorium, as the lens through which to explore his life and work.This book is a timely read, coinciding as it does with the moving of the renowned Exploratorium from the Palace of Fine Arts at the foot of the Golden Gate Bridge in San Francisco, where it was established in 1969, to its new and larger location at Pier 15 on the Embarcadero. This institution continues to embody the vision of its founder, Frank Oppenheimer, the subject of this highly personal yet well-documented biography. The author, K. C. Cole, worked with Oppenheimer at the Exploratorium from 1972 until 1985 and in a subsequent voluminous correspondence. Together, they wrote magazine articles, prepared exhibit labels, developed applications for funding, and worked on a book project. The author herself is an ideal narrator, representing the target audience for the Exploratorium itself: the intelligent, curious, nonscientist. She brings the reader along on her voyage of discovery of the process of science through interactions with her enthusiastic and thoughtful guide.The book''s title, Something Incredibly Wonderful Happens, is drawn from a piece called “Adult Play,” which Oppenheimer wrote for the Exploratorium magazine in 1980 (Oppenheimer, 1980) . He describes play as activity without a particular goal, just noticing how something works or does not, combining things on a whim and often ending up with nothing in particular, throwing it out, and playing in a different way. “But a research physicist gets paid for this ‘waste of time’ and so do the people who develop exhibits in the Exploratorium. Occasionally though, something incredibly wonderful happens.” As the embodiment of the ease and freedom of play using exhibits designed to stimulate curiosity and challenge perception, the Exploratorium is precisely the sort of place where such exciting revelations can occur. The originality of the Exploratorium concept, a science museum without rules, encouraging experimentation and hands-on interaction with the exhibits, an environment where it is impossible to fail, grew organically from Oppenheimer''s own experiences of science and science teaching and was further informed by his rich background in art and music and his commitment to democracy in access to the riches of the intellectual life. The book thus provides a model for current life sciences educators, a particular view of the style of instruction that is now widely understood to be the most effective way to engage students in the processes of science. In this review, I will focus on those aspects of Oppenheimer''s life that most directly led to his approach to informal science education.The first six chapters describe Oppenheimer''s childhood, education, early work as an atomic physicist (including the Manhattan Project, which he worked on with his brother, Robert Oppenheimer), his difficulties during the McCarthy era, and a period of more than a decade in Pagosa Spring, Colorado, where he became a self-taught rancher and science teacher at the local high school. Blacklisted from university employment, he turned to the local community, who welcomed him and shared with him their agricultural expertise while valuing his contributions to the education of their children. A typical event was recalled by his son Michael, in which he and his father dissected a pig''s head after the pig had been slaughtered (p. 110). His teaching portfolio included general science, biology, chemistry, and physics. The students were not eager to learn at first, so Oppenheimer came up with intriguing experiments to capture their attention. They took apart machinery, dissected various organisms, explored the rural area and the junkyard, and asked questions. Sports were the preoccupation of most students, but they could involve relatively few students directly, and the emphasis on wins and losses took away much of the fun. Science fairs became a more democratic activity, and the students were unusually successful, bringing notice to Pagosa Springs and further opportunities for its students. In all his dealings with students, Oppenheimer took pains to answer their questions with honesty and rigor while adjusting his approaches to their intellectual maturity. He was not limited by age-appropriate curricula or preconceptions as to what a young teenager could understand. He also began working with teachers to help them develop similarly engaging curricula, a new concept for many of them, for whom science teaching was a threatening challenge. Oppenheimer understood that only excited and engaged teachers could adequately excite their students.At the end of his time in Colorado, he worked at the University of Colorado, where he undertook a revision of the physics teaching laboratories. In doing so, he developed and improvised instruments to conduct experiments on a wide range of physical phenomena. In this period, he became convinced that grades, particularly the grade of “F,” were pernicious and inhibited full creativity and curiosity in students, particularly those whose background was not that of the traditional academic culture. He worked hard to include opportunities for minority students in his courses and noticed how somewhat arbitrary “rules” tended to perpetuate the division between those who were “in” and those who were “out.” He also recognized the role of the physical setting in fostering excitement about science; he insisted on open laboratories surrounding lecture space, so the artificial distinction between the two modes of learning was blurred, and cooperation and conversation could be part of learning. The experiments became a sort of “library,” accessible all day long with the same freedom as a library of books.The first half of the book ends with Oppenheimer''s visits to science museums in Europe as a Guggenheim Fellow in 1965. He realized that the context of the science museum, particularly as a means to reach underserved members of the public, would be the best venue for his educational ideas. In the second half of the book, we learn of the development of the Exploratorium itself, designed in every aspect to encourage visitors to play and to be comfortable in their enjoyment of the exhibits, and to help them satisfy their curiosity. Analogous to a walk in the woods during which you notice various aspects of the environment, some large, some small, and take delight in them, the Exploratorium provided a “woods” of natural phenomena, through which visitors could walk, dallying here or there to try out one or another of the exhibits. Though all principles of science were important, an emphasis was placed on those involving direct perception. Aesthetics were important in all the exhibits, and artists were invited to prepare works and installations placed side by side with more traditionally “scientific” exhibits, thus blurring that somewhat artificial distinction. In fact, Oppenheimer was a proficient flautist and grew up in a home rich in art. He, more than most, was acutely aware of the beauty of science and the rigor of art, both ways of probing the human spirit. He is quoted as saying that artists and scientists are the official “noticers” of society (p. 191), an intriguing idea.A particularly innovative aspect of the Exploratorium was the hiring of students to be Explainers. Not as stuffy or formal as a typical docent, the Explainer''s job was to help others use the exhibits, perhaps suggesting ways the apparatus could be manipulated or what important principles it demonstrated. We now call this practice “peer-assisted learning,” and recent work has documented its advantages to both the explainer and the explainee.Another firmly held principle, at least during Oppenheimer''s life, was that admission to the Exploratorium should be free of charge. Despite a perennial shortage of funds, this principle was adhered to, guaranteeing that people could drop in from time to time as they might visit a favorite park, for a brief refreshing break or for a longer jaunt. Not only did such practice encourage regular visits, it democratized the institution by removing barriers to participation by those otherwise lacking means.Ultimately, Oppenheimer''s attitude toward science teaching and learning, as embodied in the Exploratorium, was to address two fundamental human needs: curiosity and confidence in one''s ability to understand things. It is a teacher''s job to get a student “unstuck” (p. 220), to intrigue the student and then to discover what the student already understands and build on it. Throughout, the teacher must reassure students that their brains are working just fine. No one ever fails a science museum.A final remark for readers of this journal is Oppenheimer''s attitude toward assessment. He said, “Why do we insist that there must always be a measure for the quality of learning? … By thus insisting we have limited our teaching to only those aspects of learning for which we have devised a ready measure. … If we prematurely insist on a quantitative measure for the effectiveness of museums, we will have to abandon the possibility of making them important” (p. 274). The criterion for evaluation of the exhibits at the Exploratorium was that they not be boring!In each of the 12 chapters of this book, subheadings are accompanied by pithy quotations from Oppenheimer himself or one of his colleagues. The scholarly apparatus of the book is contained in notes and a bibliography at the end, so it does not distract from a highly entertaining and edifying read. I recommend this book.  相似文献   

14.
Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.  相似文献   

15.
Traditional courses for graduate students in the biological sciences typically span a semester, are organized around the fundamental concepts of a single discipline, and are aimed at the needs of incoming students. Such courses demand significant time commitment from both faculty and course participants; thus, they are avoided by a subset of the academic science community. Course length and the high barrier to course development are inhibitory to the creation of new courses, especially in emerging areas of biology that may not merit a full-semester approach. Here, we describe the implementation of a new, graduate-level course format, created to allow for rapid development of courses, provide meaningful educational experiences for both junior and senior graduate students and other members of our community, and increase the breadth of faculty involvement in teaching. These courses are greatly abbreviated, and thus termed “nanocourses.” Based on experience from the first three semesters, nanocourses seem to accomplish the initial goals that we set. Importantly, nanocourses engaged students, postdoctoral fellows, faculty, and others, thus providing a new mechanism to educate our community in response to rapid advances in biology. In our view, nanocourses are a useful tool that can supplement graduate-level curricula in varied ways.  相似文献   

16.
Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members’ decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members’ likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute’s 2007–2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed.  相似文献   

17.
Instructors attempting new teaching methods may have concerns that students will resist nontraditional teaching methods. The authors provide an overview of research characterizing the nature of student resistance and exploring its origins. Additionally, they provide potential strategies for avoiding or addressing resistance and pose questions about resistance that may be ripe for research study.
“What if the students revolt?” “What if I ask them to talk to a neighbor, and they simply refuse?” “What if they do not see active learning as teaching?” “What if they just want me to lecture?” “What if my teaching evaluation scores plummet?” “Even if I am excited about innovative teaching and learning, what if I encounter student resistance?”
These are genuine concerns of committed and thoughtful instructors who aspire to respond to the repeated national calls to fundamentally change the way biology is taught in colleges and universities across the United States. No doubt most individuals involved in promoting innovative teaching in undergraduate biology education have heard these or variations on these fears and concerns. While some biology instructors may be at a point where they are still skeptical of innovative teaching from more theoretical perspectives (“Is it really any better than lecturing?”), the concerns expressed by the individuals above come from a deeply committed and practical place. These are instructors who have already passed the point where they have become dissatisfied with traditional teaching methods. They have already internally decided to try new approaches and have perhaps been learning new teaching techniques themselves. They are on the precipice of actually implementing formerly theoretical ideas in the real, messy space that is a classroom, with dozens, if not hundreds, of students watching them. Potential rejection by students as they are practicing these new pedagogical skills represents a real and significant roadblock. A change may be even more difficult for those earning high marks from their students for their lectures. If we were to think about a learning progression for faculty moving toward requiring more active class participation on the part of students, the voices above are from those individuals who are progressing along this continuum and who could easily become stuck or turn back in the face of student resistance.Unfortunately, it appears that little systematic attention or research effort has been focused on understanding the origins of student resistance in biology classrooms or the options for preventing and addressing such resistance. As always, this Feature aims to gather research evidence from a variety of fields to support innovations in undergraduate biology education. Below, we attempt to provide an overview of the types of student resistance one might encounter in a classroom, as well as share hypotheses from other disciplines about the potential origins of student resistance. In addition, we offer examples of classroom strategies that have been proposed as potentially useful for either preventing student resistance from happening altogether or addressing student resistance after it occurs, some of which align well with findings from research on the origins of student resistance. Finally, we explore how ready the field of student resistance may be for research study, particularly in undergraduate biology education.  相似文献   

18.
19.
Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of undergraduates, particularly science majors, has been limited. In this study, NOS views of undergraduates in introductory environmental science and upper-level animal behavior courses were measured using Likert items and open-ended prompts. Analysis revealed similarities in students'' views between the two courses; both populations held a mix of naïve, transitional, and moderately informed views. Comparison of pre- and postcourse mean scores revealed significant changes in NOS views only in select aspects of NOS. Student scores on sections addressing six aspects of NOS were significantly different in most cases, showing notably uninformed views of the distinctions between scientific theories and laws. Evidence-based insight into student NOS views can aid in reforming undergraduate science courses and will add to faculty and researcher understanding of the impressions of science held by undergraduates, helping educators improve scientific literacy in future scientists and diverse college graduates.  相似文献   

20.
This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research.This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as “Abstract available,” full text may be accessible at the indicated URL for readers whose institutions subscribe to the corresponding journal.1. Bush SD, Pelaez NJ, Rudd JA, Stevens MT, Tanner KD, Williams KS (2013). Widespread distribution and unexpected variation among science faculty with education specialties (SFES) across the United States. Proc Natl Acad Sci USA 110, 7170–7175.[Available at: www.pnas.org/content/110/18/7170.full.pdf+html?sid=f2823860-1fef-422c-b861-adfe8d82cef5]College and university basic science departments are taking an increasingly active role in innovating and improving science education and are hiring science faculty with education specialties (SFES) to reflect this emphasis. This paper describes a nationwide survey of these faculty at private and public degree-granting institutions. The authors assert that this is the first such analysis undertaken, despite the apparent importance of SFES at many, if not most, higher education institutions. It expands on earlier work summarizing survey results from SFES used in the California state university system (Bush et al., 2011 ).The methods incorporated a nationwide outreach that invited self-identified SFES to complete an anonymous, online survey. SFES are described as those “specifically hired in science departments to specialize in science education beyond typical faculty teaching duties” or “who have transitioned after their initial hire to a role as a faculty member focused on issues in science education beyond typical faculty teaching duties.” Two hundred eighty-nine individuals representing all major types of institutions of higher education completed the 95-question, face-validated instrument. Slightly more than half were female (52.9%), and 95.5% were white. There is extensive supporting information, including the survey instrument, appended to the article.Key findings are multiple. First, but not surprisingly, SFES are a national, widespread, and growing phenomenon. About half were hired since the year 2000 (the survey was completed in 2011). Interestingly, although 72.7% were in tenured or tenure-track positions, most did not have tenure before adopting SFES roles, suggesting that such roles are not, by themselves, an impediment to achieving tenure. A second key finding was that SFES differed significantly more between institutional types than between science disciplines. For example, SFES respondents at PhD-granting institutions were less likely to occupy tenure-track positions than those at MS-granting institutions and primarily undergraduate institutions (PUIs). Also, SFES at PhD institutions reported spending more time on teaching and less on research than their non-SFES peers. This may be influenced, of course, by the probability that fewer faculty at MS and PUI institutions have research as a core responsibility. The pattern is complex, however, because all SFES at all types of institutions listed teaching, service, and research as professional activities. SFES did report that they were much more heavily engaged in service activities than their non-SFES peers across all three types of institutions. A significantly higher proportion of SFES respondents at MS-granting institutions had formal science education training (60.9%), as compared with those at PhD-granting institutions (39.3%) or PUIs (34.8%).A third finding dealt with success of SFES in obtaining funding for science education research, with funding success defined as cumulatively obtaining $100,000 or more in their current positions. Interestingly, the factors that most strongly correlated statistically with funding success were 1) occupying a tenure-track position, 2) employment at a PhD-granting institution, and 3) having also obtained funding for basic science research. Not correlated were disciplinary field and, surprisingly, formal science education training.Noting that MS-granting institutions show the highest proportions of SFES who are tenured or tenure-track, who are higher ranked, who are trained in science education, and who have professional expectations aligned with those of their non-SFES peers, the authors suggest that these institutions are in the vanguard of developing science education as an independent discipline, similar to ecology or organic chemistry. They also point out that SFES at PhD institutions appear to be a different subset, occupying primarily non–tenure track, teaching positions. To the extent that more science education research funding is being awarded to these latter SFES, who occupy less enfranchised roles within their departments, the authors suggest the possibility that such funding may not substantially improve science education at these institutions. However, the authors make it clear that the implications of their findings merit more careful examination and discussion.2. Opfer JE, Nehm RH, Ha M (2012). Cognitive foundations for science assessment design: knowing what students know about evolution. J Res Sci Teach 49, 744–777.[Abstract available: http://onlinelibrary.wiley.com/doi/10.1002/tea.21028/abstract]The authors previously published an article (Nehm et al., 2012) documenting a new instrument (more specifically, a short-answer diagnostic test), Assessing Contextual Reasoning about Natural Selection (ACORNS). This article describes how cognitive principles were used in designing the theoretical framework of ACORNS. In particular, the authors attempted to follow up on the premise of a National Research Council (2001) report on educational assessment that use of research-based, cognitive models for student learning could improve the design of items used to measure students’ conceptual understandings.In applying this recommendation to design of the ACORNS, the authors were guided by four principles for assessing the progression from novice to expert in using core concepts of natural selection to explain and discuss the process of evolutionary change. The items in ACORNS are designed to assess whether, in moving toward expertise, individuals 1) use core concepts for facilitation of long-term recall; 2) continue to hold naïve ideas coexistent with more scientifically normative ones; 3) offer explanations centered around mechanistic rather than teleological causes; and 4) can use generalizations (abstract knowledge) to guide reasoning, rather than focusing on specifics or less-relevant surface features. Thus, these items prioritize recall over recognition, detect students’ use of causal features of natural selection, test for coexistence of normative and naïve conceptions, and assess students’ focus on surface features when offering explanations.The paper provides an illustrative set of four sample items, each of which describes an evolutionary change scenario with different surface features (familiar vs. unfamiliar taxa; plants vs. animals) and then prompts respondents to write explanations for how the change occurred. To evaluate the ability of items to detect gradations in expertise, the authors enlisted the participation of 320 students enrolled in an introductory biology sequence. Students’ written explanations for each of the four items were independently coded by two expert scorers for presence of core concepts and cognitive biases (deviations from scientifically normative ideas and causal reasoning). Indices were calculated to determine the frequency, diversity, and coherence of students’ concept usage. The authors also compared the students’ grades in a subsequent evolutionary biology course to determine whether the use of core concepts and cognitive biases in their ACORNS explanations could successfully predict future performance.Evidence from these qualitative and quantitative data analyses argued that the items were consistent with the cognitive model and four guiding principles used in their design, and that the assessment could successfully predict students’ level of academic achievement in subsequent study of evolutionary biology. The authors conclude by offering examples of student explanations to highlight the utility of this cognitive model for designing assessment items that document students’ progress toward expertise.3. Sampson V, Enderle P, Grooms J (2013). Development and initial validation of the Beliefs about Reformed Science Teaching and Learning (BARSTL) questionnaire. School Sci Math 113, 3–15.[Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1949-8594.2013.00175.x/full]The authors report on the development of a Beliefs about Reformed Science Teaching and Learning (BARSTL) instrument (questionnaire), designed to map teachers’ beliefs along a continuum from traditional to reform-minded. The authors define reformed views of science teaching and learning as being those that are consistent with constructivist philosophies. That is, as quoted from Driver et al. (1994 , p. 5), views that stem from the basic assumption that “knowledge is not transmitted directly from one knower to another, but is actively built up by the learner” by adjusting current understandings (and associated rules and mental models) to accommodate and make sense of new information and experiences.The basic premise for the instrument development posed by the authors is that teachers’ beliefs about the nature of science and of the teaching and learning of science serve as a filter for, and thus strongly influence how they enact, reform-based curricula in their classrooms. They cite a study from a high school physics setting (Feldman, 2002 ) to illustrate the impact that teachers’ differing beliefs can have on the ways in which they incorporate the same reform-based curriculum into their courses. They contend that, because educational reform efforts “privilege” constructivist views of teaching and learning, the BARSTL instrument could inform design of teacher education and professional development by monitoring the extent to which the experiences they offer are effective in shifting teachers’ beliefs toward the more constructivist end of the continuum.The BARTSL questionnaire described in the article has four subscales, with eight items per subscale. The four subscales are: a) how people learn about science; b) lesson design and implementation; c) characteristics of teachers and the learning environment; and d) the nature of the science curriculum. In each subscale, four of the items were designed to be aligned with reformed perspectives on science teaching and learning, and four to have a traditional perspective. Respondents indicate the extent to which they agree with the item statements on a 4-point Likert scale. In scoring the responses, strong agreement with a reform-based item is assigned a score of 4 and strong disagreement a score of 1; scores for traditional items were assigned on a reverse scale (e.g., 1 for strong agreement). A more extensive characterization of the subscales is provided in the article, along with all of the instrument items (see Appendix).The article describes the seven-step process and associated analyses used to, in the words of the authors, “assess the degree to which the BARTSL instrument has accurately translated the construct, reformed beliefs about science teaching, into an operationalization.” The steps include: 1) defining the specific constructs (concepts that can be used to explain related phenomena) that the instrument would measure; 2) developing instrument items; 3) evaluating items for clarity and comprehensibility; 4) evaluating construct and content validity of the items and subscales; 5) a first round of evaluation of the instrument; 6) item and instrument revision; and 7) a second evaluation of validity and reliability (the extent to which the instrument yields the same results on repetition). Step 3 was accomplished by science education doctoral students who reviewed the items and provided feedback, and step 4 with assistance from a seven-person panel composed of science education faculty and doctoral students. Administration of the instrument to 104 elementary teacher education majors (ETEs) enrolled in a teaching method course was used to evaluate the first draft of the instrument and identify items for inclusion in the final instrument. The instrument was administered to a separate population of 146 ETEs in step 7.The authors used two estimates of internal consistency, a Spearman-Brown corrected correlation and coefficient alpha, to assess the reliability of the instrument; the resulting values were 0.80 and 0.77, respectively, interpreted as being indicative of satisfactory internal consistency. Content validity, defined by the authors as the degree to which the sample of items measures what the instrument was designed to measure, was assessed by a panel of experts who reviewed the items within each of the four subscales. The experts concluded that items that were designed to be consistent with reformed and traditional perspectives were in fact consistent and were evenly distributed throughout the instrument. To evaluate construct validity (which was defined as the instrument''s “theoretical integrity”), the authors performed a correlation analysis on the four subscales to examine the extent to which each could predict the final overall score on the instrument and thus be viewed as a single construct of reformed beliefs. They found that each of the subscales was a good predictor of overall score. Finally, they performed an exploratory factor analysis and additional follow-up analyses to determine whether the four subscales measure four dimensions of reformed beliefs and to ensure that items were appropriately distributed among the subscales. In general, the authors contend that the results of these analyses indicated good content and construct validity.The authors conclude by pointing out that BARTSL scores could be used for quantitative comparisons of teachers’ beliefs and stances about reform-minded science teaching and learning and for following changes over time. However, they recommend BARTSL scores not be used to infer a given level of reform-mindedness and are best used in combination with other data-collection techniques, such as observations and interviews.4. Meredith DC, Bolker JA (2012). Rounding off the cow: challenges and successes in an interdisciplinary physics course for life sciences students. Am J Phys 80, 913–922.[Abstract available at: http://ajp.aapt.org/resource/1/ajpias/v80/i10/p913_s1?isAuthorized=no]There is a well-recognized need to rethink and reform the way physics is taught to students in the life sciences, to evaluate those efforts, and to communicate the results to the education community. This paper describes a multiyear effort at the University of New Hampshire by faculties in physics and biological sciences to transform an introductory physics course populated mainly by biology students into an explicitly interdisciplinary course designed to meet students’ needs.The context was that of a large-enrollment (250–320 students), two-semester Introductory Physics for Life Science Students (IPLS) course; students attend one of two lecture sections that meet three times per week and one laboratory session per week. The IPLS course was developed and cotaught by the authors, with a goal of having “students understand how and why physics is important to biology at levels from ecology and evolution through organismal form and function, to instrumentation.” The selection of topics was drastically modified from that of a traditional physics course, with some time-honored topics omitted or de-emphasized (e.g., projectile motion, relativity), and others thought to be more relevant to biology introduced or emphasized (e.g., fluids, dynamics). In addition, several themes not always emphasized in a traditional physics course but important in understanding life processes were woven through the IPLS course: scaling, estimation, and gradient-driven flows.It is well recognized that life sciences students need to strengthen their quantitative reasoning skills. To address their students’ needs in this area, the instructors ensured that online tutorials were available to students, mathematical proofs that the students are not expected use were de-emphasized, and Modeling Instruction labs were incorporated that require students to model their own data with an equation and compose a verbal link between their equations and the physical world.Student learning outcomes were assessed through the use of the Colorado Learning Attitudes about Science Survey (CLASS), which measures students’ personal epistemologies of science by their responses on a Likert-scale survey. These data were supplemented by locally developed, open-ended surveys and Likert-scale surveys to gauge students’ appreciation for the role of physics in biology. Students’ conceptual understanding was evaluated using the Force and Motion Concept Evaluation (FCME) and Test of Understanding Graphs in Kinematics (TUG-K), as well as locally developed, open-ended physics problems that probed students’ understanding in the context of biology-relevant applications and whether their understanding of physics was evident in their use of mathematics.The results broadly supported the efficacy of the authors’ approaches in many respects. More than 80% of the students very strongly or strongly agreed with the statement “I found the biological applications interesting,” and almost 60% of the students very strongly or strongly agreed with the statements “I found the biological applications relevant to my other courses and/or my planned career” and “I found the biological applications helped me understand the physics.” Students were also broadly able to integrate physics into their understanding of living systems. Examples of questions that students addressed include one that asked students to evaluate the forces on animals living in water versus those on land. Ninety-one percent of the students were able to describe at least one key difference between motion in air and water. Gains in the TUG-K score averaged 33.5% across the 4 yr of the course offering and were consistent across items. However, the positive attitudes about biology applications in physics were not associated with gains in areas of conceptual understanding measured by the FCME instrument. These gains were more mixed than those from the TUG-K and dependent on the concept being evaluated, with values as low as 15% for some concepts and an average gain on all items of 24%. Overall, the gains on the two instruments designed to measure physics understanding were described by the authors as being “modest at best,” particularly in the case of the FCME, given that reported national averages for reformed courses for this instrument range from 33 to 93%.The authors summarize by identifying considerations they think are essential to design and implementation of a IPLS-like course: 1) the need to streamline the coverage of course topics to emphasize those that are truly aligned with the needs of life sciences majors; 2) the importance of drawing from the research literature for evidence-based strategies to motivate students and aid in their development of problem-solving skills; 3) taking the time to foster collaborations with biologists who will reinforce the physics principles in their teaching of biology courses; and 4) considering the potential constraints and limitations to teaching across disciplinary boundaries and beginning to strategize ways around them and build models for sustainability. The irony of this last recommendation is that the authors report having suspended the teaching of IPLS at their institution due to resource constraints. They recommend that institutions claiming to value interdisciplinary collaboration need to find innovative ways to reward and acknowledge such collaborations, because “external calls for change resonate with our own conviction that we can do better than the traditional introductory course to help life science students learn and appreciate physics.”I invite readers to suggest current themes or articles of interest in life science education, as well as influential papers published in the more distant past or in the broader field of education research, to be featured in Current Insights. Please send any suggestions to Deborah Allen (ude.ledu@nellaed).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号