首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
几何证题中,若遇三角形的角平分线以及角平分线的垂线时,常常设法构造等腰三角形来解题,现举例说明. 例l如图1,匕1一乙2,C刀土A刀,BE一CE,求证:(1)DE// AB.(2)DE 1,,~一-二~LJ气Zj 艺证一AC).(1)延长CD交AB于F点.“: 厂~一夕 //BE艺1一乙2,AD土CF,由等腰三角形三线合一知CD一FD,又‘:E为BC中点,…DE// (2)由(1)知DE为△CBF的中位线,AF一图1ABACDE_李BF一 艺AF)一喜(AB 乙AC). 仔叨2AE土CE证:MN-如图2,△ABC中,CE、C尸分别平分乙ACB、艺ACD,于E、AF土CF于F,直线EF交AB、AC于M、N.求1~~一二厂石七.艺 证…  相似文献   

2.
正题目已知:如图,△ABC中,D是AB上一点E是AC上一点,且AD=AE,DE的延长线交BC的延长线于F.求证BFFCBDCE.证法一:如图1,作CGAB△FCG△FBDBFFC=BDCG1=4AD=AE12231334CE  相似文献   

3.
在几何证题中,利用图形的不同特征,添加适当的辅助线,构造全等三角形是常用的证题方法,现举例如下.例1如图1,已知AD是△ABC的中线,点F是AC上一点,连结BF交AD于点E,且FA=FE,求证:AC=BE.  相似文献   

4.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

5.
学习了《相似形》一章后,我们可以借助比例来证明很多类型的几何题.一、证明两线段相等例1如图1,点C为线段AB上一点,△ACM、△CBN都是等边三角形,AN交CM于E,BM交CN于F.求证:CE=CF.证明 由已知易得二、证明两角相等例2 已知:在梯形ABCD中,AD∥BC,AB=DC求证:∠B=∠C.证明  延长BA、CD交于点E(如图2).三、证明线段不等例3 在△ABC中,AB=AC,D是BC延长线上一点,E是AB上一点,DE交AC于点F.求证:AE<AF.证明  过B作BG∥EF交AC延长线于G(如图3),则AG>AC=AB.四、证明线段和…  相似文献   

6.
不少几何题,虽然在给定的图形中没有明显的全等三角形,但我们可根据题目的特征巧妙地构造全等三角形,从而找到证题的思路. 一、平移法例1 已知△ABC中,AB=AC,E在AB上,F在AC的延长线上,且BE=CF,EF交BC于D,求证:DE=DF 分析:欲证DE=DF,图中无明显的全等三角形,这时可考虑去构造,过E作EG∥AF,交BC于G,只须证△DCF(?)△DGE即可.  相似文献   

7.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

8.
三角形中位线定理是一个重要定理.其应用极为广泛.本文结合实例介绍其应用. 例1 如图1,D是△ABC的边BC的中点,E、F是AC边上的两点,且AB=CE,AF=EF,DF的延长线交BA的延长线于G.求证:AF=AG. 分析由D、F分别是BC、AE的中点联想到三角形的中位线定理,为此可连结  相似文献   

9.
几何课本中有这样一道题:在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证BP:CP=BD:CE.(提示:经过点C作AB的平行线CF交DP于F点)  相似文献   

10.
1.如图1,△ABC中,AB≠AC,△ADB与△AEC都是等边三角形(三边相等、三内角相等).那么,CD与BE是否相等?为什么?图1图22.已知,如图2,△ABC中,BD⊥AC于D,CE⊥AB于E,他们相交于点F,且BF=AC.在CE的延长线上取点G,使CG=AB.连接AF,AG.试说明AF⊥AG.3.已知,如图3,AD∥BC,DE∥BF,点E,F在AC上,AF=CE.你能说明AB与DC的位置关系吗?图3图4图54.已知,如图4,CF是正方形ABCD外角∠DCG的平分线,E是BC边上的一点,且AE⊥EF.你能说明AE与EF相等吗?(提示:正方形的四条边相等.设法找到分别以AE,EF为一边的两个三角形,并说明他…  相似文献   

11.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

12.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

13.
每期一题     
题如图1,在△ABC中,AB=3AC艺A的平分线交BC于D,过B作BE工AD,垂足为E,求证AD=DE。(广西刁柳洲地区教育局陈有光) 即AD+ZDE=3AD,.’.AD== DE。 又法,延长AC、BE交于F(图5),再作CG上BF于G,则从△CGF“△AEF也 证法一,(利用全等三角形)如图2,延长BE、AC交于F,则AF二AB,CF=2月C,取BC的中点H,连结EH,则EH生士CF,于是可证得A刀二DE。 证法三(利用平行截线)延长AC,BE交于F (如图6),则AF=月B,且E为BF的中点,过E作,石万,DC交A尸于H,才 F 八 /、叔 图6\则CH二HF,考虑到AF二AB=3Ac,故CH二AC,又刀CIEH,.’. A…  相似文献   

14.
证明等积式一般先将它恰当地化成比例式。若比例式中的四条线段构成有关相似三角形对应边的比 ,则问题较易解决。否则 ,应考虑添加辅助线 ,构成有关的相似三角形 ,以助问题的解决。  例 1.在△ ABC中 (AB>AC)的边 AB上取一点 D,在边 AC上取一点 E,使 AD=AE,直线 DE和BC的延长线交于点 P,求证 BP∶ CP=BD∶ CE。证明 :过点 C作CF∥ AB交 PD于F,则 BPCP=BDCF。∵AD=AD,∴∠ 1=∠ 4 ,∴∠ 3=∠ 4 ,∴ CE=CF,∴ BPCP=BDCE。  说明 :这是过分点 C作平行线 ,过 C还可作 CG∥ PD交 AB于 G(如上图 )。另证 :过 B作…  相似文献   

15.
在解一点分线段为二倍关系的几何题中 ,可以构造以该点为重心的新三角形 .利用三角形的重心性质解题 ,有时可以收到很好的效果 ,因为解题是构造性的 ,因此在培养学生的解题能力有很大帮助 :其解法新颖别致、能提高学生的学习兴趣 .1 证线段相等例 1 △ABC中 ,AB =AC ,E在AB上 ,BE =2EA .以AB为直径的圆交BC于D .连AD、CE相交于F .求证 :AF =FD .证明 如图 1,利用BE=2EA ,构造△BGC使E是△CBG的重心 .这样得A是GC中点 ,H是GB中点 .AD⊥BC ,由AB =AC知D是BC的中点 ,因此四边形HDCA为 .由此得AF =FD .图 1   …  相似文献   

16.
在1997年安徽省初中数学竞赛中,有这样一道题:例1如图1,在△ABC中,∠BAC=90°AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.分析:过C作CM⊥AC交AF延长线于  相似文献   

17.
人教版2007.9在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系.现分类加以说明.一、延长中线构造全等三角形例1如图1,AD是△ABC的中线,求证:AB AC>2AD.证明:延长AD至E,使AD=DE,连接CE.如图2.∵AD是△ABC的中线,∴BD=CD.又∵∠1=∠2,AD=DE,∴△ABD≌  相似文献   

18.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

19.
与角平分线有关的证明和求值问题在几何学习中屡见不鲜。解答此类问题时 ,可采取沿角平分线两侧构造全等三角形的方法 ,这样能化难为易。一、当题设中出现了角的一边上一点与角平分线的垂线段时 ,可延长该垂线段与角的另一边相交。例 1 如图 ,AC=BC,∠ ACB=90°,∠ A的平分线 AD交 BC于 D,过 B作BE⊥ AD于 E。求证 :BE=12 AD。   (1 999年天津市初二数学竞赛试题 )证明 :延长 BE交 AC的延长线于 F。∵∠ AEB=∠ AEF=90°, AE=AE,∠ 1 =∠ 2 ,∴△ AEB≌△ AEF(A SA)。∴ BE=FE=12 BF。∵BC⊥AF,AE⊥ BF,∴∠ B…  相似文献   

20.
全等三角形的性质定理与判定定理是平面几何知识的基础,有着广泛的应用.有些几何图形虽然不是明显的全等三角形,但是可根据图形条件或结论的特点,通过平移或旋转来构造全等三角形,进而利用全等三角形的性质证得结论.一、将一部分图形平移,构造全等三角形证题例1如图1,已知在△ABC中,A D是BC边上的中线,E是A D上一点,BE=AC,BE的延长线交A C于F,求证:A F=EF.分析本题可通过作△AD C关于点D的对称△GD B,从而把证AF=EF,即∠FAE=∠A EF转化为证明∠G=∠BEG.证明作BG∥AC交A D的延长线于G,则△AD C≌△GD B.因为AC=BG,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号