首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
对于均值不等式n(a1a2…an)~(1/2)≤(a1 a2 … an)/n,当且仅当a1=a1=a3=…=an时等号成立,这是一个大家都很熟悉的条件,大多数人在解或证明不等式即将完成时,用它来完善不等式的解答,鲜有人注意到它对不等式问题的解答有启发和导向作用,下面我们就举例来说明.  相似文献   

2.
大家都知道,基本不等式中的等号,当且仅当诸数都相等时成立.事实上,我们遇到的要证明的绝大多数不等式的条件与结论都是关于所含字母的轮换对称式,这就预示着这些字母在解题中的地位是相同的,因此,当他们取值相同时,等号可能成立.于是,可以先猜测并验证要证明的不等式中等号成立的条件,然后,结合已知,通过拆添项、配凑等手段构造一系列基本不等式,最后通过同向不等式的运算给出证明.下面举例说明.  相似文献   

3.
用均值定理求最值必须满足一正、二定、三相等这3个条件.而用其求最大(小)值的关键是构造出几个正数的和或积为定值.且使等号成立.如何构造出这样的数是顺利解题的关键。本文就如何构造出均值不等式的条件进行归纳,供同学们参考.  相似文献   

4.
王俊青 《山东教育》2002,(26):36-37
在整个高中数学中,求函数的最值是一项重要内容。这类问题常和生活实际联系比较密切。由于应用问题已进入高考,而且具有强烈的时代气息,所以最值问题也是高考的热点和难点问题。求函数最值的方法有很多种,利用均值不等式求最值是一种比较常用的方法。对均值不等式,高考已限制在二元、三元均值不等式的应用。以三元均值不等式为例:若a、b、c∈R+,则a+b+c≥33abc姨(当且仅当a=b=c时等号成立)利用此不等式求最值时应注意以下几个问题:(1)a、b、c∈R+;(2)a+b+c或abc为常数;(3)不等式中等号成立的条件必须具备。…  相似文献   

5.
在《不等式》一章中,均值不等式是一项重要内容,也是高考的热点,教材中明确指出,如果a、b是正数,那么a+b/2≥√ab(当且仅当a=b时取等号),但是同学们在做题过程中往往理解不够而误用,就此问题,笔者略举几例:  相似文献   

6.
著名的均值不等式"若α1,α2,…,αn∈R ,则α1 α2 …αn/n≥(n√α1α2…αn),仅当α1=α2=…=an(n≥2,n∈N)时等号成立"是一个应用广泛的不等式,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值,且运用均值定理求最值是历年来高考的热点内容.因此必须掌握利用重要不等式求函数的最值的方法和技巧.  相似文献   

7.
均值不等式√ab≤a+b/2(a≥0,b≥0),其中a+b/2称为a、b的算术平均数,√ab称为a、b的几何平均数,因而该定理又可叙述为:2个正数的算术平均数不小于它们的几何平均数,其中等号成立的前提是a=b.  相似文献   

8.
均值不等式等号成立的配凑技巧   总被引:1,自引:0,他引:1  
利用均值不等式求最值或证明不等式是高中数学的一个重点.在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行配凑变形.均值不等式等号成立的条件具有潜在的应用功能.以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种配凑技巧.笔者通过实践,把运用均值不等式的配凑技巧概括为六类,下面对此作些论述.  相似文献   

9.
1.均值不等式 均值不等式a+b≥2√ab(a、b〉0)指出:若两正数和为定值,那么当且仅当两正数相等时,乘积取最大值.换言之,若两正数和为定值,当两正数之差为零时,它们的乘积最大.由此得到,若把一个正整数拆分成两个正整数之和,那么这两个整数之差越小(大的减小的),它们的乘积越大.如x、y是非负整数,z+y=c,x—y=d(x≥y),xy=c+d/2·c-d/2=1/4(c^2-d^2).  相似文献   

10.
均值不等式求最值   总被引:1,自引:0,他引:1  
均值不等式是指a b/2≥(ab的平方根)(a、b∈R^ )及a^2 b^2≥2ab(a、b∈R)等几个重要不等式,合理地利角均值不等式(特别是等号成立的条件),构建关系式,可帮助我们解决一类最值问题。  相似文献   

11.
设a1,a2,…,an∈R+,n≥2,则n/1/a1+1/a2+…+1/an≤n√a1·a2…an,其中等号成立的充要条件为a1=a2=…an.  相似文献   

12.
命题 已知α〉0,b〉0,求证√α^2+b^2/2≥α+b/2≥√αb≥2αb/α+b,当且仅当α=b时等号成立。  相似文献   

13.
大家知道均值不等式是中学重要的常用的基本不等式,认真思考等号成立的条件,坚持变换方向与条件不矛盾,借助一定的变换技巧,能解决范围广泛的一类难题.本文试图以一例及其变形加以说明,以求抛砖引玉.  相似文献   

14.
最值问题一直是高中数学中常见的题型,其解法也是五花八门,同学们在学习了均值不等式后,对最值问题又多了一把解答的工具,本文将和同学们一起探讨如何巧用均值不等式求解最值问题.  相似文献   

15.
利用均值不等式求最值或证明不等式是高中数学的一个重点.在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行配凑变形.均值不等式等号成立条件具有潜在的运用功能.以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种配凑方法.笔者把运用均值不等式的配凑方法概括为八类.  相似文献   

16.
17.
用均值不等式求最值必须注意三点 :(1 )不等式中的变元为正 ;(2 )不等式中一边为定值 ;(3 )不等式中等号能成立 .在求最值时 ,常用变形技巧有 :一、巧拆项这里的拆项必须是均拆 .均拆整式 ,均拆分式 ,同时均拆整式或分式 .怎样拆因题而异 .例 1 已知 0 <x≤ π2 ,求函数y =sinx2 2sinx的最小值 .解 :∵ 0 <x≤ π2 ,∴ 0 <sinx≤ 1 (x=π2时取等号 )均拆分式凑积为定值 ,且等号能够成立 ,即y=sinx2 12sinx 12sinx 12sinx 12sinx≥ 55(12 ) 5(1sinx) 3 ≥ 52 .当且仅当sinx2 =12sinx,即…  相似文献   

18.
均值不等式a2 b≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用公式求解.但是,有些题目必须进行必要的变形才能利用均值不等式求解.下面是一些常用的变形技巧.一、配凑1、凑系数例1当00,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子的积的形式,但其和不是定值.注意到2x (8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可.解y=x(8-2x)=21[2x·(8-2x)]≤212x 82-2x2=8,当且仅当2x=8-2x即x=2时取等号.∴当x=2时…  相似文献   

19.
均值不等式的应用是高中数学的重要内容,也是高中数学的一个难点,它因题型广泛、涉及面广、灵活多变,备受命题者的青睐,成为历届高考中的高频考点.应用均值不等式既可解决函数、方程等方面的问题,又经常同函数、方程结合来解决代数、几何及实际应用领域中的问题.应用均值不等式解决函数、方程问题时,关键要将问题转化与化归.转化时需适当运用配方思想、函数思想、分类讨论思想来分析解决问题;化归时要注意变量的范围和式子的等价性.在利用均值不等式求值时,一定要紧扣"一正""二定""三相等"这三个条件.  相似文献   

20.
均值不等式a2 b≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用公式求解.但有些题目必须进行必要的变形才能利用,下面是一些常用的变形技巧.1配凑1)凑系数例1当00,利  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号