首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
解答某些与二次根式有关的求值问题时,利用两数的和与积作整体代换,能取得事半功倍的效果。例1.若x=3-23 2,y=3 23-2,则3x2-5xy 3y2=。(1996年四川省初中数学竞赛试题)解:化简,得x=5-26,y=5 26。∴x y=10,xy=1.原式=3x2-5xy 3y2-5xy  =3(x y)2-11xy  =289。例2.已知x<0为实数,且x-1x=5,则x7 12x4 xx8 9x4 1的值为(  )。(A)-9319; (B)-1993;(C)-328; (D)-75。(1993年哈尔滨市初中数学竞赛试题)解:设1x=y,那么x-y=5,yx=1。∵x<0,y<0,  ∴x y=-(x-y)2 4xy=-3。∴x2 y2=(x-y)2 2xy=7。∴x7 12x4 xx8 9x4 1=(x7 12x4 x)÷x4(x8 9x4 1…  相似文献   

2.
数学命题中的隐含条件常常容易被学生忽略,故而导致解题错误。 例1.已知关于x的方程mx~2-2(3m—1)x gm-1=0有两个实根,求m的范围。 错解 ∵方程有两个实根, ∴△≥0。 即△=[2(3m—1)]~2-4m(9m-1)≥0, 4(-5m 1)≥0, m≤1/5。 分析 根据方程有两个实根隐含条件:此  相似文献   

3.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

4.
因忽略题中的隐晦条件而造成解题失误,是许多同学解题时易犯的一种错误。例 已知实数x,y满足等式x~2 4y~2-4x=0,求x~2-y~2的最大值和最小值。 有的同学求解如下: 解:∵ x~2 4y~2-4x=0, ∴ y~2=x-1/4x~2。 (1) ∴ x~2-y~2=x~2-(x-1/4x~2) =5/4x~2-x=5/4(x-2/5)~2-1/5 (2) 由(2)式可知,x~2-y~2没有最大值;当x=2/5时,x~2-y~2有最小值,其最小值为-1/5。  相似文献   

5.
高中代数第一册(甲种本)教学参考书是全国通用的、与全国统一教材配套的主要参考书.其中关于高一代数(甲种本)复习参考书——(B组)第37题(3)(4)的解答,笔者认为需作修改,现叙述如下. 37(3)求函数y=1/((x-1)(2x-1))的值域. 参考书中的解答如下: “先解出x,由原式得 2yx_(?)~2-3yx y-1=0, (1) ∴x=(3y±(y(y 8))~1/2)/(4y). (2)  相似文献   

6.
三次方程的根的个数,该如何求呢?利用导数,便可以解决.下面讨论:方程ax3 bx2 cx d=0(a>0)的根.分析:函数y=ax3 bx2 cx d的图象与x轴有几个交点,方程便有几个根.解:由题意得:f′(x)=3ax2 2bx c∵a>0∴y=f′(x)图象开口向上,且Δ=4b2-12ac(1)当Δ>0时,即4b2-12ac>0,b2>3ac时∴方程f′(x)=0有两个不同的实根,x1,x2不妨设x1x2时f′(x)>0,x1相似文献   

7.
△ =b2 - 4ac叫做一元二次方程 ax2 + bx+ c=0(a≠ 0 )的根的判别式。灵活应用它 ,不仅可以解答一些与一元二次方程有关的问题 ,一些非一元二次方程问题也可获得巧妙解答。一、与一元二次方程有关的问题例 1 若方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,则方程 x2 + ax+ b=0的两根分别是 (   )(A) 0 ,3;(B) 0 ,- 3;(C) 1,4 ;(D) 1。解 :由方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,∴△ =(a- 3) 2 - 4(- 3a- b2 ) - 0 ,∴ (a+ 3) 2 + 4 b2 =0。∵ (a+ 3) 2≥ 0 ,4 b2≥ 0 ,∴ a=- 3,b=0。这时 ,要求的方程即为 x2 - 3x=0∴ x1=0 ,x2 …  相似文献   

8.
与往年相比 ,2 0 0 2年全国高中数学联赛试题总体难度有所降低 .一试更加接近高考 ,加试题也容易入手 .下面是笔者提供的异于命题组标准答案的部分题目的解答 ,仅供参考 .第一试一、选择题第 2题 若实数 x、y满足 (x + 5 ) 2 + (y-12 ) 2 =14 2 ,则 x2 + y2的最小值为 (B)(A) 2 .  (B) 1.  (C) 3 .  (D) 2 .另解 1:记 x2 + y2 =M 1(x + 5 ) 2 + (y -12 ) 2 =14 2 22 -1得 :2 (5 x -12 y) + 13 2 =14 2 -M即 5 x -12 y + M -2 72 =0 3圆心 (-5 ,12 )到公共弦方程 3的距离为d =| -5 2 -12 2 + M -2 72 |5 2 + (-12 ) 2 ≤ 14解得 1≤ …  相似文献   

9.
错在哪里     
<正>题目已知函数f(x)=x3-6bx3-6bx2+b在区间(0,1)内存在平行于x轴的切线,则实数b的取值范围为_____.解因为切线平行于x轴,所以切线的斜率为0.因为f(x)=x2+b在区间(0,1)内存在平行于x轴的切线,则实数b的取值范围为_____.解因为切线平行于x轴,所以切线的斜率为0.因为f(x)=x3-6bx3-6bx2+b,所以f′(x)=3x2+b,所以f′(x)=3x2-12bx.由题意知f′(x)=0在(0,1)内有解,所以f′(x)=3x2-12bx.由题意知f′(x)=0在(0,1)内有解,所以f′(x)=3x2-12bx=0,得x=0或x=4b,所  相似文献   

10.
函数不仅是高中数学的核心,而且是学习高等数学的基础.函数的定义域则是研究函数的基础,是考核数学素质的主要阵地.【例1】函数f(2x-1)的定义域是[0,1],求f(1-3x)的定义域.解:f(2x-1)的定义域是[0,1],即0≤x≤1,于是-1≤2x-1≤1,所以函数f(t)的定义域是[-1,1]令-1≤1-3x≤1,得0≤x≤23即f(1-3x)的定义域是[0,23]点评:函数f(2x-1)的定义域是指x的取值范围,而非(2x-1)的值域【例2】求函数f(x)=2-x 3x 1的定义域.解:由2-x 3x 1≥0x-1x 1≥0x<-1或x≥1∴f(x)的定义域为(-∞,-1)∪[1, ∞)【例3】已知y=f(x)的定义域为[0,1],求y=f(lnx)的定义域.解…  相似文献   

11.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

12.
一、解函数题例1.方程lgx+x-3=0的解x0所在区间为以下选项中的哪一个?A(0,1)B(1,2)C(2,3)D(3,∞)解析:如图1,先构造函数f(x)=lgx与g(x)=3-x并作出它们的图象,如图1可知可以确定x∈(1,3),但f(2)-g(2)=lg2-1<0,即x=2时,f(x)2.同理:f(3)-g(3)=lg3-0>0,即x=3时,知f(x)>g(x),∴x0<3.∴答案为C.例2.求函数y=x√+1-x√的值域.解析:作y1=x√,y2=1-x√的图象,如图2,由函数图1的定义域为[0,1]和图象知:函数在x=0,x=1时,有最小值1;在x=12时,取最大值2√.(对称性图象)∴函数的值域是[1,2√].二、解不等式例3.求不等式5-4x-x2√≥x解集.图2…  相似文献   

13.
“1”的妙用     
“1”是不可缺少的一个数,目然数中它排首位,实数里是单位。它有许许多多的妙用之处,本文所谈到的仅是这些应用中的沧海一粟。一、1=a÷a=a×1/a(a≠0) [例1] 解方程: (x-1)/(x 1) (x-4)/(x 4)=(x-2)/(x 2) (x-3)/(x 3)解:((x-1)/(x 1) 1) ((x-4)/(x-4) 1) =((x-2)/(x 2) 1) ((x-3)/(x 3) 1) ∴2x/(x 1) 2x/(x 4)=2x/(x 2) 2x/(x 3)。∴ x=0或1/(x 1) 1/(x 4)=1/(x 2) 1/(x 3) (2x 5)/(x 1)(x 4)=(2x 5)/(x 2)(x 3) ∴ 2x 5=0 x=-5/2。或(x 1)(x 4)=(x 2)(x 3)但无解  相似文献   

14.
探索型1.解 :( 1)依题意可得 :x1+ x2 =2 ,x1· x2 =k由 y=( x1+ x2 ) ( x12 + x2 2 -x1x2 ) =( x1+ x2 ) [( x1+ x2 ) 2-3 x1x2 ] =2 ( 4 -3 k) =8-6k 即 y=8-6k.( 2 )∵方程有两实数根∴ Δ=b2 -4ac=4-4k≥ 0 .∴ k≤ 1.由此得 -6k≥ -6. ∴y=8-6k≥ 8-6=2 .即当 k=1时 ,y有最小值 2 ,没有最大值 .2 .( 1)解 :∵∠ BAC=∠ BCO,∠ BOC=∠ COA=90°,∴△ BCO∽△ CAO,∴ AOCO=COOB.∴ CO2 =AO· OB.由已知可得 :AO=| x1| =-x1,OB=| x2 | =x2 .∵ x1x2 =-m<0 ,∴ m>0 .∴ CO=m,AO· OB=m.∴ m2 =m,∴ m=1,m=0 (舍去 ) .∴…  相似文献   

15.
判别式与韦达定理是中考命题中的热点,在解答与它们有关的问题时,一定要重视隐含条件,若注意不到或挖掘不彻底,就会导致错误.例1已知关于x的方程(1-2k)x2-2k+1摇姨x-1=0有两个不相等的实数根,求k的取值范围.误解∵摇方程有两个不相等的实数根,∴△>0,即(2k+1摇姨)2-4(1-2k)×(-1)>0.解得k<2.分析原因:该解题中还有两个隐含条件没有被挖掘出来:①二次项系数1-2k≠0;②被开方数k+1≥0.正解:由题知△>0,1-2k≠0,k+1≥0 .即摇(2k+1摇姨)2-4(1-2k)×(-1)>0,1-2k≠0,k+1≥0 .摇摇摇摇解得k<2,摇k≠12,摇k≥-1 .摇摇摇综合得-1≤k<2且…  相似文献   

16.
在一个函数关系式中,如果含自变量的一边是两个二次根式的和,且这两个二次根式的平方和等于一个正实数,那么可用方差公式求出这个函数的最大值.下面举例说明.例1求函数y=3-x 2 x的最大值.解由原函数式可知y>0.∵3-x和2 x这两个数的方差是:s2=12[(3-x)2 (2 x)2-22y2]≥0.整理,得10-y2≥0,即y2≤10,∴y最大值=10.例2求函数y=4x3 5 13-4x3的最大值.解由原函数式可知y>0.∵4x3 5和13-4x3这两个数的方差是:s2=21[(4x3 5)2 (13-4x3)2-22y2]≥0.整理,得36-y2≥0,即y2≤36,∴y最大值=6.例3求函数y=2x2 3x 1 7-2x2-3x的最大值.解由原函数式可知y>0.∵…  相似文献   

17.
在初中代数的习题中 ,常会遇到一些特殊的高次方程 ,如用常规方法来解 ,过程一般较为繁琐 ,且容易出错。现例举出来 ,供同学们参考。一、中值变换例 1 解方程 :x4+ (x - 2 ) 4 =82 .分析 :直接展开较繁 ,取x与 (x - 2 )的算术平均数设为 y ,进行中值变换。解 :令x - 1 =y ,则原方程变为 :( y + 1 ) 4 + ( y - 1 ) 4 =82展开合并得2 y4+ 1 2 y2 + 2 =82 即 y4+ 6y2 - 40 =0∴ ( y2 + 1 0 ) ( y2 - 4) =0∴y2 =- 1 0 (舍去 ) ,y2 =4 ∴y =± 2∴x - 1 =± 2 ∴x1 =3 x2 =- 1二、倒数变换例 2 解方程 :x4- 3x3- 2x2 - 3x + 1 =0 .分析 :…  相似文献   

18.
《中学数学教学参考》编辑部举办的首届中学生数学智能通讯赛中高二年级试题第18题为 :若x ,y∈R ,x y =1,则xx2 y3 yx3 y2 ≤ 83 . ( 1)(从该刊 2 0 0 4年第 5期 p .5 9提供的解答来看 ,条件“x ,y ∈R”应为“x ,y ∈R ”)类比之 ,容易证得命题 1 若x ,y ,∈R ,x y =1,则xx y2 yx2 y ≤ 43 . ( 2 )证明 因为x y2 =y2 -y 1=( y-12 ) 2 34>0 ,x2 y>0 ,所以不等式 ( 2 )等价于3 [x(x2 y) y(x y2 ) ] ≤ 4(x y2 ) (x2 y) x3 y3 4x2 y2 -2xy≥ 0 (x y) 3-3xy(x y) 4x2 y2 -2xy≥ 0 4x2 y2 -5xy 1≥ 0 (xy-14 ) (xy-1)≥ 0 ( 3…  相似文献   

19.
函数在每年高考试题中都占有相当大的比重,从2004年高考题目中又可见到有拓宽函数命题领域的趋向.本文浅析高考函数命题的新趋势.一、三次函数闪亮登场由于导数的出现使三次函数问题呈现出新奇的亮点.【例1】已知函数f(x)=ax3-3x2-x-1在R上是减函数,求a的取值范围.解:由f(x)x∈R是减函数.故f′(x)=3ax2-6x-1<0当3ax2-6x-1<0]a<0且Δ=36 12a≤0∴a≤-3,即a∈(-∞,-3).【例2】已知函数f(x)=ax3 bx2-3x在x=±1处取得极值.(Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.解:(Ⅰ)f′(x)=3ax…  相似文献   

20.
在数学竞赛中经常会碰到一些涉及两数(式)和与两数(式)积的问题,这类问题一般难度较大,不易解答。解答这类问题需要掌握一定的策略。本文举例说明解答这类问题常见的策略,供同学们参考。1 利用完全平方式转化和积 例1 已知x,y,z为实数,且x y z=5,xy yz zx=3,试求z的最大值与最小值。(加拿大第10届数学竞赛题) 解由题意有x y=5-z①,xy (x y)z=3,所以xy=3-(x y)z=3-(5-z)z=z2-5z 3②,由①②利用公式(x y)2-4xy=(x-y)2≥0得(5-z)2-4(z2-5z 3)≥0,即3z2-10z-13≤0,解之得-1≤z≤13/3,故z  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号