首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Providing prompts to induce focused processing of the central contents of instructional explanations is a promising instructional means to support novice learners in learning from instructional explanations. However, within research on the expertise reversal effect it has been shown that instructional means that are beneficial for novices can be detrimental for learners with more expertise if the instructional means provide guidance that overlaps with the internal guidance provided by the prior knowledge of learners with more expertise. Under such circumstances, prompts to induce focused processing might even be detrimental for learners with expertise whose prior knowledge already provides internal guidance to learn from explanations. On this basis, we aimed at experimentally varying expertise by developing prior knowledge. Specifically, we used a preparation intervention with contrasting cases to enhance learners’ prior knowledge (expertise). Against this background, we tested 71 university students in a 2 × 2 factorial experimental design: (a) Factor of expertise. Working with contrasting cases to develop prior knowledge and expertise to provide internal guidance to learn from instructional explanations (with vs. without), (b) Factor of prompts. Prompts to induce focused processing of the explanations (with vs. without). The results showed that prompts to induce focused processing fostered conceptual knowledge for novice learners whereas prompts hindered the acquisition of conceptual knowledge for learners with expertise that was developed by working with contrasting cases beforehand. Moreover, measures of subjective cognitive load and learning processes suggest that the instructional guidance provided by prompts compensated for the low internal guidance of novice learners and overlapped with the internal guidance of learners with expertise.  相似文献   

2.
Research on the structure of memory has led to evidence that relating unfamiliar information to that which is familiar facilitates the new material's acquisition and retention; moreover, such associations can be efficiently achieved through the use of analogies. The present paper discusses the current information processing conceptualization of memory, the processes of learning by analogy, and the overall desired outcomes of their use to acquire and retain new information. Additionally, instructional implications of how, when, and why to use analogies are discussed.  相似文献   

3.
Recent technological advances now make possible the full integration of sound in instructional software. Sounds may gain and focus learner attention, reduce distracting stimuli, and make learning more engaging. In addition, they may help learners condense, elaborate on, and organize details, highlighting inter connections among new pieces of information and making connections to preexisting knowledge. Thus, sound may hold great promise for moderating acquisition, processing, and retrieval “noise” in instructional software. Unfortunately, interface and instructional design guides almost completely ignore sound, and research suggests many promising instructional uses remain largely unexplored. This paper explores information-processing and communication theoretical foundations for sound's systematic use in the instructional communication system and proposes a framework for a program of research on instructional software's use of sound. MJ is assistant progressor in the Educational Technology program at Lehigh University, and Ward teaches instructional design and interface design and coordinates the Educational Technology program there.  相似文献   

4.
The present study investigated the utility of an instructional strategy known as the query method for enhancing learning outcomes in computer-based training. The query method involves an embedded guided, sentence generation task requiring elaboration of key concepts in the training material that encourages learners to ‘stop and think’ about the information already presented before proceeding to new concepts. This study also investigated the effect of varying the level of elaboration (low or high) prompted by the queries. Fifty-one undergraduate students from the general psychology department subject pool at a major university in the southeastern United States received instruction on the basic principles of flight via one of three versions of a computer-based tutorial (no query, low-level elaboration query, or high-level elaboration query). Participants had no prior knowledge or previous experience with the aviation domain. A one-way between-groups design was employed, with the query method serving as the independent variable and a sample size of 17 per condition. Dependent variables included knowledge organization, knowledge acquisition, and instructional efficiency. Overall, results showed that incorporating low-level elaboration queries into the training resulted in improved organization, integration, and application of task-relevant knowledge and higher instructional efficiency. High-level elaboration queries consistently failed to produce significantly better post-training outcomes, possibly due to the increased cognitive load imposed on learners during training. The discussion centers on theoretical and practical implications for promoting and assessing learning outcomes in computer-based training.  相似文献   

5.
One of the factors affecting students' learning in science is their existing knowledge prior to instruction. The students' prior knowledge provides an indication of the alternative conceptions as well as the scientific conceptions possessed by the students. This study is concerned primarily with students' alternative conceptions and with instructional strategies to effect the learning of scientific conceptions; i.e., to effect conceptual change from alternative to scientific conceptions. The conceptual change model used here suggests conditions under which alternative conceptions can be replaced by or differentiated into scientific conceptions and new conceptions can be integrated with existing conceptions. The instructional strategy and materials were developed for a particular student population, namely, black high school students in South Africa, using their previously identified prior knowledge (conceptions and alternative conceptions) and incorporate the principles for conceptual change. The conceptions involved were mass, volume, and density. An experimental group of students was taught these concepts using the special instructional strategy and materials. A control group was taught the same concepts using a traditional strategy and materials. Pre- and posttests were used to assess the conceptual change that occurred in the experimental and control groups. The results showed a significantly larger improvement in the acquisition of scientific conceptions as a result of the instructional strategy and materials which explicitly dealt with student alternative conceptions.  相似文献   

6.
7.
《Learning and Instruction》2003,13(2):227-237
Multimedia learning environments combine multiple forms of representations like texts, static and animated pictures or graphs. Knowledge acquisition from multiple representations requires that the learner create referential connections between corresponding elements and corresponding structures in different representations. As this process is usually difficult, learners frequently fail to construct coherent mental representations and, thus, do not sufficiently understand the subject matter. This paper analyzes the effects of different kinds of instructional help on the process of coherence formation from multiple representations by learners with different prior knowledge. Three groups of university students with different domain-specific knowledge had to learn a complex subject matter from chemistry using six different forms of representation. In addition, a first group received directive help for coherence formation. A second group received non-directive help, and a third group received no instructional help. Results indicate that directive help is effective for recall performance because of its summarizing and repeating function. Furthermore, learners with different levels of prior knowledge show different reactions when help is given. For learners with insufficient prior knowledge help is not helpful or, in case of recall performance, even harmful. Learners with a medium level of prior knowledge can increase especially their comprehension performance when help is offered, whereas learners with too much prior knowledge seem not to be affected by help.  相似文献   

8.
Hypermedia learning environments (HLE) unevenly present new challenges and opportunities to learning processes and outcomes depending on learner characteristics and instructional supports. In this experimental study, we examined how one such HLE—MetaTutor, an intelligent, multi-agent tutoring system designed to scaffold cognitive and metacognitive self-regulated learning (SRL) processes—interacts with learner’s prior domain knowledge to affect their note-taking activities and subsequent learning outcomes. Sixty (N = 60) college students studied with MetaTutor for 120 min and took notes on hypermedia content of the human circulatory system. Log-files and screen recordings of learner-system interactions were used to analyze notes for several quantitative and qualitative variables. Results show that most note-taking was a verbatim copy of instructional content, which negatively related to the post-test measure of learning. There was an interaction between prior knowledge and pedagogical agent scaffolding, such that low prior knowledge students took a greater quantity of notes compared to their high prior knowledge counterparts, but only in the absence of MetaTutor SRL scaffolding; when agent SRL scaffolding was present, the note-taking activities of low prior knowledge students were statistically equivalent to the number of notes taken by their high prior knowledge counterparts. Theoretical and instructional design implications are discussed.  相似文献   

9.
Although instructional explanations are commonly used to introduce learners to new learning content, previous studies have often shown that their effects on learning outcomes are minimal. This failure might partly be due to mental passivity of the learners while processing introductory explanations and to a lack of opportunity to revise potential misunderstandings after working on introductory explanations. Against this background, we provided learners with two instructional support measures to optimise the introduction of new principles and concepts by providing instructional explanations in the domain of management theory: (a) prompts designed to induce inferences that are focused on the central content of the explanations, and (b) remedial explanations that are adapted to the learners’ knowledge gaps. We tested their effects in a 2 × 2 factorial experimental design with the following factors: (a) prompts designed to induce focused processing (with vs. without), and (b) remedial explanations (adapted vs. random). The participants consisted of 80 psychology students. We found that the prompts fostered both the share of deep-oriented processing and the acquisition of conceptual knowledge. The beneficial effect of prompts on conceptual knowledge was mediated by the number of inferences that learners generated in response to the prompts. In addition, we found that prompts also fostered the instructional efficiency of providing instructional explanations. The provision of adapted remedial explanations, however, fostered neither deep-oriented processing nor the acquisition of conceptual knowledge. We conclude that prompts designed to induce focused processing can foster deep-oriented processing as well as both the effectiveness and efficiency of learning from instructional explanations.  相似文献   

10.
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) sense-making skills that allow students to verbally explain mappings among representations and (2) perceptual fluency in connection making that allows students to fast and effortlessly use perceptual features to make connections among representations. These different connection-making skills are acquired via different types of learning processes. Therefore, they require different types of instructional support: sense-making activities and fluency-building activities. Because separate lines of research have focused either on sense-making skills or on perceptual fluency, we know little about how these connection-making skills interact when students learn domain knowledge. This article describes two experiments that address this question in the context of undergraduate chemistry learning. In Experiment 1, 95 students were randomly assigned to four conditions that varied whether or not students received sense-making activities and fluency-building activities. In Experiment 2, 101 students were randomly assigned to five conditions that varied whether or not and in which sequence students received sense-making and fluency-building activities. Results show advantages for sense-making and fluency-building activities compared to the control condition only for students with high prior chemistry knowledge. These findings provide new insights into potential boundary conditions for the effectiveness of different types of instructional activities that support students in making connections among multiple visual representations.  相似文献   

11.
Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) sense making of connections by verbally explaining how different representations map to one another, and (2) perceptual fluency that allows students to fast and effortlessly use perceptual features to make connections among representations. Because these different competencies are acquired via different types of learning processes, they require different types of instructional support: sense-making activities and fluency-building activities. In a prior experiment, we showed benefits for combining sense-making activities and fluency-building activities. In the current work, we test how to combine these two forms of instructional support, specifically, whether students should first work on sense-making activities or on fluency-building activities. This comparison allows us to investigate whether sense-making competencies enhance students’ acquisition of perceptual fluency (sense-making-first hypothesis) or whether perceptual fluency enhances students’ acquisition of sense-making competencies (fluency-first hypothesis). We conducted a lab experiment with 74 students from grades 3–5 working with an intelligent tutoring system for fractions. We assessed learning processes and learning outcomes related to representational competencies and domain knowledge. Overall, our results support the sense-making-first hypothesis, but not the fluency-first hypothesis.  相似文献   

12.
There are three kinds of transfer: from prior knowledge to learning, from learning to new learning, and from learning to application. The central thesis of this chapter is that all three should start from the dilemmas or paradoxes learners may have when trying to reach transfer. Six of these are described. They are finding relevant prior knowledge; the paradox of tacit knowledge; using relevant prior knowledge while learning; recognizing relevant situations and conditions; the paradox of near transfer and far transfer; and the paradoxical “what” of transfer, including learning to learn. In order to optimize transfer one needs to help learners solve the problems they encounter and to find ways out of the various dilemmas and paradoxes. For the three kinds of transfer exemplary studies are described that illustrate the kinds of solutions developed and their effectiveness.  相似文献   

13.
This chapter describes a theory relating four alterable elements of classroom organization and instruction to instructional effectiveness: Quality of instruction, appropriate levels of instruction, incentive, and time (QAIT). These elements are hypothesized to be multiplicatively related to student achievement gain, so that multiple elements may have to be improved if classroom innovations are to produce substantial achievement gains. Evidence on classroom strategies and behaviors that contribute to each element is reviewed, and the QAIT model is applied to discussions of effects of individualized instruction, ability grouping, and tutoring.  相似文献   

14.
This experiment was designed to examine the instructional effectiveness and efficiency of organizational chunking and batched postquestions within the framework of an information-processing approach to learning and memory. The coding processes utilized by the content organization employed both encoding and retrieval aids to facilitate the acquisition, retention, and retrieval of the information to be learned. Major findings indicate that the chunked treatment resulted in a more efficient learning strategy than the conventional treatment; however, the chunked and conventional treatment, as different encoding strategies, did not produce significant differences in achievement on the performance task. Additionally, students receiving the intervening postquestion strategy took significantly less time in completing the performance measure than did those students who received the non-intervening postquestion treatment.  相似文献   

15.
How the brain learns to read has been the subject of much neuroscience educational research. Evidence is mounting for identifiable networks of connected neurons that are particularly active during reading processes such as response to visual and auditory stimuli, relating new information to prior knowledge, long-term memory storage, comprehension, and memory retrieval. This article offers strategies that build on current research showing the correlation of brain structure and literacy development, providing interventions for educators.  相似文献   

16.
Research has demonstrated that oral explaining to a fictitious student improves learning. Whether these findings replicate, when students are writing explanations, and whether instructional explaining is more effective than other explaining strategies, such as self-explaining, is unclear. In two experiments, we compared written instructional explaining to written self-explaining, and also included written retrieval and a baseline control condition. In Experiment 1 (N = 147, between-participants-design, laboratory experiment), we obtained no effect of explaining. In Experiment 2 (N = 50, within-participants-design, field-experiment), only self-explaining was more effective than our control conditions for attaining transfer. Self-explaining was more effective than instructional explaining. A cumulating meta-analysis on students’ learning revealed a small effect of instructional explaining on conceptual knowledge (g = 0.22), which was moderated by the modality of explaining (oral explaining > written explaining). These findings indicate that students who write explanations are better off self-explaining than explaining to a fictitious student.  相似文献   

17.
18.
The recent advances in software and computer technology have enabled the incorporation of dynamic representations into a multitude of educational and training environments. Cognitive load theory has been extensively used to enhance learning from complex dynamic representations by providing appropriate instructional designs to manage learner cognitive load. The available evidence, however, indicates that the suggested instructional designs that are effective for novice learners can reverse and become ineffective for learners with higher levels of prior knowledge. This phenomenon is called the expertise reversal effect. This paper reviews a series of recent experimental studies that have found interactions between levels of learners' organized knowledge structures (endogenous support) and effectiveness of different instructional designs (exogenous support), leading to the expertise reversal effect. It is argued that adapting instructional designs to learners with different amount of prior knowledge is a crucial part of effective learning.  相似文献   

19.
Schools face a lot of data on the functioning of their school which they can use to make improvements in teaching, learning and the organization. For data use to lead to improvement, it is important to further research the concept data-driven decision making. The results of this explorative study in the Netherlands show that teachers mainly use classroom level data for making instructional decisions at classroom level, and school leaders mainly use school level data for policy development decisions. This article ends with suggestions with regard to enhancing the effectiveness of data-driven decision making, for example by stressing the importance of developing teachers' competence in the use of data.  相似文献   

20.
The main task of an educational system is to generate instructional situations which induce students to learn knowledge and problem solving abilities as applied to a cognitive domain.
To this end, an instructional dialogue must be seen as a process aimed at making student and teacher learn from each other: the student has to learn the subject matter from the teacher, while the teacher has in turn to learn from the student how to regulate instructional interaction. The process relies on different kinds of expert knowledge: experience of the domain, about the actual student, and of teaching methods and objectives. This means that an instructional dialogue cannot be realised without an explicit representation of all the kinds of knowledge involved.
Research has established that Knowledge Based Educational Systems (KBESs) can be the keystone in building effective learning tools, but because of the difficulty in realising a system of this kind, most existing systems are prototypes and are intended only as workbenches for the computational analysis of educational processes.
This paper analyses the main problems which underlie the realisation of such systems, with reference to research into knowledge based systems intended for use with teaching/learning mathematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号