首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
函数解析式是研究函数性质的基础 ,求函数的解析式是函数问题中较难掌握的一类问题 ,下面结合实例谈谈求函数解析式的 1 0种常用方法 .1 配凑法已知f[g(x) ]的解析式 ,求f(x)的解析式 ,常用配凑法 .例 1 已知f(x 1x) =x2 1x2 -x -1x 1 ,求f(x) .解 因为f(x 1x) =(x 1x) 2 - (x 1x) - 1 ,所以f(x) =x2 -x - 1 .评注 配凑法的关键就是通过观察 ,把f[g(x) ]的解析式凑成关于g(x)的形式 .2 换元法已知f[g(x) ]=h(x) ,且g(x)存在反函数 ,求f(x)的解析式 ,常用换元法 .例 2 已知f(x 1x ) =x2 1x2 1x,求f(x) .解 设x 1x =t,则x =1t…  相似文献   

2.
题型1已知函数f(x)的解析式,求函数f[g(x)]的解析式. 解法:将函数f(x)中的全部x都用g(x)来代换,即可得到函数f[g(x)]的解析式.  相似文献   

3.
在一些教辅参考材料中存在着这样一种流行病,即已知f(g(x))和g(x)的解析式,求f(x)的解析式.也有很多文章指出这样的问题是错误的,并且各有争议.是由于f(x)的定义域不知道,导致了得出的f(x)的解析式不唯一,但是  相似文献   

4.
函数解析式是函数与自变量之间的一种对应关系,是函数与自变量之间建立联系的桥梁.在高中数学中有求函数解析式的一类题,它与课本上的函数这一内容关系密切,并且具有一定的规律性.现就求解方法例析如下: 一、拼凑法已知f[g(x)]的解析式,要求f(x)时,可从f[g(x)]的解析式中拼凑出"g(x)",即川g(x)来表示,再将解析式的两边的g(x)用x代替的方法叫做拼凑法.  相似文献   

5.
※求值问题※例1:已知函数f(x)=x2(x>0),1(x=0)0(x<0)".,求f{f[f(-3)]}的值.分析:明确自变量在函数的哪一个段上,是解此类题的关键.解:∵-3<0,∴f(-3)=0,∴f[f(-3)]=1,∴f{f[f(-3)]}=f(1)=12=1.※求解析式问题※例2:已知f(x)=x,g(x)=-x+1,!(x)=-12x+2.设f(x),g(x),!(x)的最大值为F(x),求F(x)的解析式.分析:本题的关键是画出图象,求出交点,从而正确地分段,再在各段上写出符合要求的解析式,最后写出分段函数的解析式.解:如图,画出f(x),g(x),!(x)的图象,下面再求交点坐标.!由y=-x+1,y=-21x+2".得yx==3-2,".由y=x,y=-12x+2".得y=34%%%%$%%%…  相似文献   

6.
求函数解析式是高考的常考题型,特别是已知f[g(x)]或g[f(x)]求f(x)或g(x),或已知f(x)或g(x)求/f[g(x)]或g[f(x)]等求解析式的问题,同学们在解决这些问题时感到比较棘手,本文对此举例探究、  相似文献   

7.
已知,(x)=2x-3,容易求得f[f(x)]=4x-9,进而可以求得f{f[f(x)]}=8x-21。如果要求(?)的解析式,问题仍可解决,但若通过逐次复合去求解,运算过程便将变得十分复杂。如果进一步要求(?)的解析式,则上述方法便完全失效。这就迫使我们去另辟蹊径,寻求新的解决问题的方法。上述问题可以如下形式一般地提出:“记f_n(x)=(?)(下文同),若已知f(x)的解析式,求f_n(x)的解析式”。本文试用递归数列为工具,给出解决该类问题的思想方法,并导出若干公式。  相似文献   

8.
把两个变量的函数关系,用一个等式来表示,这个等式叫函数的解析式,简称解析式.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.本文笔者对求解函数解析式常用的八种方法逐一进行介绍.一、配凑法已知f[g(x)]=h(x),求f(x)的解析式,常用配凑法.该方法主要通过观察、配方、凑项等使原函数变形为关于“自变量”的表达式,然后以x代替“自变量”得出所求函数的解析式.例1已知f(1 1x)=x12-1,求f(x)的解析式.解析把解析式按“自变量”1 1x变形得f(1 1x)=(1 1x)2-2(1 1x),在上式中以x代替(1 1x),得f(x)=x2-2x(x≠1).这里需要特别注意的是,不要遗漏解析式的定义域x≠1.二、待定系数法已知函数类型或图像以及相关条件,求函数解析式时,常用待定系数法.此方法适用于所求函数的解析式表达式是多项式的情形,首先确定多项式的次数,写出它的一般表达式,然后由已知条件以及多项式相等的条件确定待定的系数.例2已知二次函数f(x)满足条件f(0)=1及f(x 1)-f(x)=2x,求f(x).解析设f(x)=ax2 b...  相似文献   

9.
求解析型最值问题的几何特征法初探   总被引:2,自引:0,他引:2  
在中学阶段中,我们讨论的最值问题,许多是或可转化为在约束条件f(x,y)=0下,求t=g(x,y)的最值.由于条件和结论都可由一个或若干个解析式给出,故称为解析型最值问题.这类问题的解法,一般要借助某些特殊方法.本文从方程与曲线的对应关系出发,以曲线和参数t  相似文献   

10.
函数的解析式也叫表达式,是函数的三要素之一.在代数中求函数的解析式,尤其是运用函数的奇偶性、对称性、周期性求函数解析式是一类重要问题,仅举几例,供大家参考.一、利用函数性质求分段函数解析式例1已知的f(x)定义域为R,且对一切x∈R满足f(2 x)=f(2-x),f(7 x)=f(7-x)(1)若f(  相似文献   

11.
在高中代数复习教学中,经常遇到求f(x)解析式一类问题,其基本模式为:已知y=f【g(x)】或y=f【f(x)】,求f(x)。这是求函数解析式中最常见的题型,它的解法较多,技巧性较强,但此类问题在高中数学教科书中几乎没有,却又与课本上的函数问题密切相关.因此,笔者归纳出几种求f(x)解析式的方法.  相似文献   

12.
函数是高中数学的核心内容,是最重要的概念之一.解析式是表达函数的最常用方法.求函数解析式方法众多,现对一些常用的方法进行总结. 一、待定系数法 已知函数类型(如一次函数、二次函数、指数函数、对数函数等)求解析式,首先设出函数解析式,然后根据已知条件通过代入求系数. 例1 已知f(x)=3x-1,f(h(x))=g(x)=2x+3,h(x)为关于x的一次函数,求h(x). 解析:设h(x)=ax+b(a≠0). 由f(x) =3x-1和f(h(x))=g(x)=2x+3,得3h(x)-1=2x+3,即3(ax+b)-1=2x+3(=)3ax+ 3b-1=2x+3,则3a=2且3b-1=3,解得a=2/3且b=4/3,故h(x)=2/3x+4/3(x∈R).  相似文献   

13.
1待定系数法例1若f(x)=x2-mx+n,f(n)=m,f(1)=2,求f(x).解依题意:2,12,n mn n mm n-----++==解得m=-2,n=-1,∴()f x=x2+2x-1.注如果已知函数式的构造模式,通常根据题设用此法求出函数式的待定系数.2换元法例2已知f(x+1)=x+1,求f(x).解令x+1=t,则x=(t-1)2(t≥1),∵f(t)=(t-1)2+1(t≥1),即f(x)=t2-2t+2(x≥1).注如果已知复合函数f(g(x))的表达式,求f(x)的解析式;先令g(x)=t,得f(x),但值得注意的是在进行变量替换时,应求出新变量的取值范围,否则容易出现错误.3代入法例3设()1f x=1-x,求f(f(f(x)))的解析式.解∵(())11f f x=1-f(x)=1-1/(1-x)1x x…  相似文献   

14.
抽象函数是指只给出函数的符号及一些性质,而没有给出具体的解析式及图像的函数。一抽象函数的定义域抽象函数f(x)的定义域是指x的取值范围. 若f(x)的定义域是D,则f[g(x)]的定义域即为g(x)∈D时的x的取值范围;若f[g(x)]的定义域是D,则f(x)的定义域即是x∈D时(?)的取值范围  相似文献   

15.
<正>函数解析式求解问题是考试中的重点问题,我们在练习过程中要有意识地进行反思和归纳总结。1.已知函数类型,求函数解析式时,可用待定系数法,比如,函数是二次函数,可设为f(x)=ax2+bx+c(a≠0),其中a,b,c为待定系数,根据条件列出方程组,解出a,b,c即可。例1已知f(x)是一次函数,且f[f(x)]=4x-1,求f(x)的解析式。解:设f(x)=kx+b(k≠0)。又因为f[f(x)]=4x-1=f(kx+b)=k(kx+b)  相似文献   

16.
导数的应用非常广泛,在利用导数处理函数问题中,求参数取值范围是一类比较典型、比较重要的问题.1参数大于函数的最小值例1定义在R上的函数f(x)=ax3+bx2+cx+3,同时满足以下条件:1f(x)在(0,1)上是减函数,在(1,+])上是增函数;ofc(x)是偶函数;f(x)在x=0处的切线与直线y=x+2垂直.()求函数y=f(x)的解析式;(ò)设g(x)=4lnx-m,若存在x I[1,e],使g(x)相似文献   

17.
配方法 当已知复合函数f[g(x)]的表达式较简单时,可采用配方法,使得f下输入的变量与解析式输出的变量一致,从而求出f(x)的解析式.  相似文献   

18.
<正>若g(x)和f(x)满足g(x)=ln f(x)或g(x)=e(f(x)),则称g(x)和f(x)互为指对互化式.例如x和ln x,x和e(f(x)),则称g(x)和f(x)互为指对互化式.例如x和ln x,x和ex,x+ln x和xex,x+ln x和xex,(ex,(ex)/x和x-ln x,xx)/x和x-ln x,xx和xln x等.在高考导数复习的过程中,经常会碰到含有指对互化式的函数要求其中参数的取值范围的问题.通常的解法有分类讨论法、分离变量法、反函数法等等,但是掌握指对互化式的特点及性质有时能快速巧妙求解.本文通  相似文献   

19.
我们知道“若函数f(x)对任意的x、y∈R满足f(x+y)=f(x)+f(y)”,则我们容易联想到正比例函数f(x)=kx是满足条件的一个具体模型,又比如“若函数f(x)对任意实数x、y都有f(x+y)=f(x)f(y)”,则我们容易想到指数函数是满足条件的一个具体模型.笔者经常在想分别满足这两个条件的函数是否就是正比例函数和指数函数呢如果真是这样那么抽象的问题就变成了具体的函数了岂不更好!那么怎样根据条件求出函数f(x)的解析式呢怎样揭开抽象函数神秘的面纱露出庐山真面目呢这类问题一直在困惑着笔者,用赋值法特殊情况下能求出函数解析式,或求出自变量为正整数时的函数解析式,但不少问题赋值却显得无能为力.最近笔者有幸拜读了《中学数学教学参考》第7期李峰老师的文章“一个问题的求解历程”,他大胆运用导数方法解决了他所遇到的几个抽象函数的解析式问题,这给笔者很大的启发和鼓舞.但笔者读后觉得言虽尽意未了,还有作进一步探讨的必要.笔者用此法对简单多项式函数、指数函数和对数函数的抽象表现形式进行了一般性的研究得出了一些自己诊断有一定价值的结论,使得我们对抽象函数的解析式问题有了进一步的认识.下面将笔者的研究成果及其应用向大家作...  相似文献   

20.
<正>已知复合三角函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈I)的图象,求函数f(x)的解析式,这是三角问题中的一个重要模式.求函数f(x)的解析式,本质就是确定参数ω、φ、A、B的值.函数f(x)的图象的中心在水平线y=B上,并且f(x)_(max)-f(x)_(min)=2A,或者再考虑图象上其它信息(如特殊点),容  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号