首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the problem of stabilization for a class of hybrid systems with time-varying delays. The system to be considered is with nonlinear perturbation and the delay is time varying in both the state and control. Using an improved Lyapunov–Krasovskii functional combined with Newton–Leibniz formula, a memoryless switched controller design for exponential stabilization of switched systems is proposed. The conditions for the exponential stabilization are presented in terms of the solution of matrix Riccati equations, which allow for an arbitrary prescribed stability degree.  相似文献   

2.
In this paper, the adaptive tracking control problem for a class of strict-feedback nonlinear systems with quantized input signal is investigated. The hysteretic quantizer is introduced to avoid the chattering phenomenon and the backstepping method is used to design the controller. The tracking errors are guaranteed to be bounded in a small neighborhood of zero via appropriate design parameters. Finally, two simulation examples are given, and the simulation results further demonstrate the effectiveness of the proposed method.  相似文献   

3.
The paper investigates the consensus problem for multi-agent systems with randomly occurring nonlinear dynamics and time-varying delay. A novel event-triggered scheme has been proposed, which can lead to a significant reduction in information communication in a network. By utilizing stochastic analysis and properties of the Kronecker product, consensus criteria are derived in the form of linear matrix inequalities, which can be readily solved using the standard numerical software. Finally, an illustrative example is used to show the effectiveness of the event-triggered scheme.  相似文献   

4.
5.
This study presents an output backstepping control architecture based on command filter via Multilayer-Neural-Network Pre-Observer with compensator to realise the reference signal tracking of an arbitrarily switching nonlinear systems with nonseperated parameter. First, a multilayer neural network pre-observer is designed before backstepping procedures to servo reconstruct the system states which can not be obtained directly. The pre-observer has superior performance in neutralizing the states abrupt chattering caused by the arbitrarily switching parameter entered in the nonlinear structure. Next, observer error compensation mechanism is designed to compensate the state estimation and shrink the approximation error domain further. Then, the backstepping controller with compensation signal based on command filter is presented to realise the stable reference signal tracking. Last, the proposed control scheme guarantees the states of the closed-loop system bounded. This mechanism makes up the shortcoming of the traditional state observer and give more flexibility in reconstructing the systems states timely, then overcomes the obstacle of the arbitrarily switching parameterized system. Furthermore, compared with the existing traditional uniform robust uncertain controller, the developed backstepping control method combining with the pre-observer not only guarantees the states servo reconstruction and servo control of the switched system, but also improves the tracking performance. Finally, a low-velocity servo turnable switched system is extensively simulated to demonstrate the effectiveness of the developed controller.  相似文献   

6.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

7.
For stochastic nonlinear systems with time-varying delays, the existing robust control approaches are unnecessarily conservative in most practical scenarios. Within this context, a mathematically rigorous and computationally tractable tube-based model predictive control scheme is proposed in the framework of contraction theory. A contraction metric is systematically constructed via convex optimization by forming a differential LyapunovKrasovskii function on tangent space. It guarantees the perturbed actual solution trajectories to be contained within a robust positive invariant tube centered along the reference trajectories and results in an explicit exponential bound on the deviation. The application scenarios of the control contraction metric controller are extended from constant delay systems into time-varying delay systems thereby. Compared with the existing robust mechanism for time-delay systems based on min-max optimization formulation with a linear feedback controller, the proposed scheme greatly reduces the design conservativeness and yields a larger region of attraction. A sparse multi-dimensional Taylor network (MTN) is designed to parameterize the family of the geodesic. Compared to conventional NNs and MTN surrogates, sparse MTN features a more concise topology that enhances its computational efficiency conspicuously. Results of the numerical simulations verify the effectiveness of the proposed method.  相似文献   

8.
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young?s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.  相似文献   

9.
10.
This paper investigates a new adaptive iterative learning control protocol design for uncertain nonlinear multi-agent systems with unknown gain signs. Based on Nussbaum gain, adaptive iterative learning control protocols are designed for each follower agent and the adaptive laws depend on the information available from the agents in the neighbourhood. The proper protocols guarantee each follower agent track the leader perfectly on the finite time interval and the Nussbaum-type item can seek control direction adaptively. Furthermore, the formation problem is studied as an extension. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method in this article.  相似文献   

11.
This paper studies the problem of decentralized stabilization for a class of large-scale stochastic high-order time-delay feedforward nonlinear systems. A series of delay-independent state feedback controllers is constructed, which is based on the approach of adding one power integrator. The stochastically global asymptotic stability (GAS) of the closed-loop system under the above-mentioned controllers is proved by Lyapunov–Krasovskii theorem and homogeneous domination approach. A simulation example is given to illustrate the effectiveness of the results of this paper.  相似文献   

12.
This paper considers a parameter-dependent controller design problem for a class of discrete-time uncertain systems subject to censored measurement. First, a set of mutually independent stochastic variables obeying uniform distribution is used to describe the system uncertainty. Then, an array of new bounded variables is introduced to characterize the boundedness of the censored measurement. In addition, a novel definition, named as finite-time boundedness in probability (FTBP), is presented to depict the dynamic behavior of addressed systems in the sense of probability. In this case, the norm of controlled system states cannot exceed a given boundary under a probability constraint. By means of the hyper-rectangle depending on the value range of stochastic variables, a sufficient condition is presented to ensure that the system is FTBP. Finally, the corresponding controller design problem is formulated as an algorithm based on the recursive linear matrix inequality. Two simulation examples are given to illustrate the effectiveness of the proposed methodology.  相似文献   

13.
In this paper, the approximate controllability of nonlinear stochastic evolution time-varying delay systems with preassigned responses is studied. The necessary conditions for controllability results of nonlinear systems are not associated with linear systems. No compactness assumptions are imposed in the main results.  相似文献   

14.
The problem of robust finite-time stability (RFTS) for singular nonlinear systems with interval time-varying delay is studied in this paper. Some delay-dependent sufficient conditions of RFTS are derived in the form of the linear matrix inequalities (LMIs) by using Lyapunov–Krasovskii functional (LKF) method and singular analysis technique. Two examples are provided to show the applications of the proposed criteria.  相似文献   

15.
16.
In this paper, containment control problems of networked fractional-order multi-agent systems with time-varying delays are studied. The normalized directed graphs are employed to characterize the communication topologies. Two sampled-data based containment control protocols are proposed, which can overcome the time-varying delays and switching topologies. It is interestingly found that the decays of the closed-loop systems correspond to the Mittag-Leffler function and its approximation, which are the extensions of the exponential function and its approximation, respectively. Based on the algebraic graph theory, the properties of row-stochastic matrix, and the relation between the topologies and the matrices, some conditions for containment control are established. For the fixed topology, a necessary and sufficient condition is obtained; and for the switching topology, a sufficient condition is provided. Finally, the theoretical results are illustrated by several numerical simulations.  相似文献   

17.
The paper is a study of quantized control for stochastic Markov jump systems with interval time-varying delays and bounded system noise under event-triggered mechanism. A new scheme of Lyapunov–Krasovskii functional which contains the quadratic terms and integral terms is presented. Then quadratic convex technology, the theory of stochastic switching system, and logarithmic quantizer are applied to this paper. The design of quantized controller is obtained with those methodologies. Different from previous results, our derivation applies the idea of second-order convex combination. The conservatism of stability criteria for systems is reduced by using this method. A numerical example under different conditions is given to demonstrate the effectiveness and validity of the new design techniques.  相似文献   

18.
This paper provides novel fault-tolerant safe control (FTSC) strategies for switched and interconnected nonlinear systems. With several switching and interconnection situations considered, the proposed corresponding strategies ensure that the state never enters the unsafe set and asymptotically converges to the origin in the presence of faults. This relies on a proposed concept named “fault-tolerant control Lyapunov-Barrier functions (FTCLBF)”. Two practical examples are taken to demonstrate the efficiency of the proposed method.  相似文献   

19.
This paper investigates the output feedback control for a class of stochastic nonlinear time delay systems based on dynamic gain technique. The nonlinear terms of the stochastic system satisfy linear growth condition on unmeasured state variables with the output dependent incremental rate, which makes the studied time delay stochastic system more general than the exiting results. Firstly, the full order dynamic gain observer is constructed. Then, the linear-like controller is designed without using recursive design method. Next, the stability analysis is given and a useful corollary is obtained. Finally, a simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

20.
In this paper, an adaptive fuzzy decentralized control method is proposed for accommodating actuator faults for a class of uncertain nonlinear large-scale systems. The considered faults are modeled as both loss of effectiveness and lock-in-place. With the help of fuzzy logic systems to approximate the unknown nonlinear functions, the novel adaptive fuzzy faults-tolerant decentralized controllers are constructed by combining the backstepping technique and the dynamic surface control (DSC) approach. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop systems are bounded and the tracking errors converge to a small neighborhood of zero. Simulation results are provided to show the effectiveness of the control approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号