首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to determine the accuracy and variability of an electromagnetic device in measuring spinal kinematics on a traditional and replica rowing ergometer. Kinematic data collected from the 3-Space FastrakTM system using a Standard Concept II ergometer were compared with a replica ergometer that was in part, composed of non-ferrous materials (modified ergometer). The Fastrak's sensors were fixed to a wooden “spine” with known angles (as measured by an inclinometer). The mean inclinometer angle from four sensors (1 ± 0.2°) was significantly different than the mean angle recorded on the standard ergometer ( ? 5.4 ± 3.4°) (p = 0.007) whilst the angles recorded on the modified ergometer (1.4 ± 0.8°) were statistically equivalent to the inclinometer recordings (p = 0.660). These results indicate that the presence of ferrous material in a standard ergometer reduced the accuracy and increased the variability of data collected with the electromagnetic device. However, information collected on largely non-ferrous ergometers can provide coaches, biomechanists and clinicians with a quick and effective way to measure trunk kinematics during ergometer rowing.  相似文献   

2.
Lumbar spine injury in rowers is common and ergometer rowing has been cited as a risk factor for this injury. The purpose of this study is to compare lumbar kinematics between ergometer and single scull rowing and to examine the effect of fatigue on kinematics. The sagittal lumbar spine motion of 19 elite male rowers (lumbar spine injury free in the previous six months) was measured with an electrogoniometer during a ‘step test’ on an ergometer and in a single sculling boat. Maximum range of lumbar flexion was recorded in standing for reference. Power output and heart rate were recorded during the ergometer tests. Heart rate was used as a surrogate for power output in the sculling test. Maximum lumbar flexion increased during the step test and was significantly greater on the ergometer (4.4° ± 0.9°change), compared with the boat (+1.3° ± 1.1°change), (3.1°difference, p = 0.035). Compared to the voluntary range of motion, there is an increase of 11.3% (ergometer) and 4.1% (boat). Lumbar spine flexion increases significantly during the course of an ergometer trial while changes in a sculling boat were minimal. Such differences may contribute to the recent findings linking ergometer use to lower-back injury.  相似文献   

3.
Abstract

This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% V?O2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (<0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.  相似文献   

4.
Abstract

Lumbar spine injury is common in rowers and examination of spinal kinematics may improve the understanding of this injury's prevalence. This study aimed to examine the range of frontal plane angular displacement (AD) in the lumbar spine at L3 during ergometer rowing and to investigate the effect of exhaustion on lumbar kinematics. Twelve elite male rowers completed an incremental test on a Concept 2 ergometer. Lumbar AD at L3 was measured continually throughout the rowing trial using a Spectrotilt Inclinometer and blood lactate was sampled at 3-minute intervals. AD of between 4.7° and 8.8° was recorded at L3. There was a significant increase in AD between the first and last stage of the test (mean increase = 4.1 ± 1.94°, 95% Confidence Interval [CI], 2.9 to 5.3°, t = 7.36, P = 0.000014). Incremental rise in AD was associated with an incremental rise in blood lactate but regression confirmed that only stroke rate was a significant predictor for increasing angle. Thus there is a statistically significant increase in frontal plane AD at L3 over the course of an incremental exercise test although it cannot be confirmed if this is as a result of exhaustion. The values of AD confirm that there is motion in the frontal plane in ergometer rowing.  相似文献   

5.
Between limb movement asymmetries and foot force production asymmetries are thought to be detrimental for both rower's performance and risk of injury, particularly when rowing frequently on ergometers. Several ergometers with different designs can be used by rowers as part of their indoor training. Hence, this study aimed to compare asymmetries in lower limb joint kinematics and foot force production with respect to ergometer design and rowing intensity. A new symmetry index was proposed to assess these asymmetries in elite rowers during a test on three ergometers. Additionally, the asymmetry in lower limb length was assessed to investigate its relationship with kinematic and kinetic asymmetries. Parameters describing medium (5–10%) or high (>10%) asymmetries were compared between rowing ergometers and intensities. Results indicated medium asymmetries for the ankle joint angle and hip–knee joint accelerations and high asymmetries for the resultant force and the ankle joint acceleration associated with a low inter-stroke variability. Kinetic asymmetry was neither correlated to kinematic asymmetry nor with lower limb length asymmetry. The use of a mobile ergometer led to higher joint acceleration asymmetries. Further studies are necessary to investigate the relation between these findings and muscular adaptations that may increase the risk of lower-back injury.  相似文献   

6.
Abstract

The purpose of this study was to investigate changes in ankle joint stiffness and the associated changes in the gastrocnemius muscle and tendon due to static stretching. Seven healthy male participants lay supine with the hip and knee joints fully extended. The right ankle joint was rotated into dorsiflexion from a 30° plantar flexed position and the torque measured by a dynamometer. The ankle joint was maintained in a dorsiflexed position for 20 min (static stretching of the calf muscles). We performed surface electromyography of the medial and lateral gastrocnemii, the soleus, and the tibialis anterior of the right leg to confirm no muscle activity throughout static stretching and the passive test (passive dorsiflexion). During static stretching, the ankle joint angle and elongation of the gastrocnemius were recorded by goniometry and ultrasonography, respectively. Tendon elongation of the gastrocnemius was calculated based on the changes in the ankle joint angle and muscle elongation. In addition, the relationships between passive torques and ankle joint angles, and elongation of muscle and tendon, were examined before and after static stretching. The ankle dorsiflexion angle and tendon elongation increased significantly by 10 min after the onset of static stretching, while there was no further increase in muscle length. In addition, ankle dorsiflexion angle and tendon elongation at an identical passive torque (30 N · m) increased significantly (from 24±7° to 33±5° and from 17±2 mm to 22±1 mm, respectively) after static stretching. However, muscle elongation was unchanged. In conclusion, the current results suggest that an increase in the ankle joint dorsiflexion angle due to static stretching is attributable to a change in tendon not muscle stiffness.  相似文献   

7.
Abstract

In this study, we assessed the extent to which 2000-m rowing ergometer performance predicted final rankings at the World Junior Rowing Championship in a sample of 398 junior rowers competing in 13 events. The rowers' ergometer performance times were examined using a questionnaire, and in all 13 events they correlated (P ≤ 0.039) with the final rankings at the Championship. The strongest correlations were observed for ergometer performance times in junior women's single sculls (r = 0.92; P < 0.001), followed by junior men's single sculls (r = 0.80; P < 0.001) and junior women's double sculls (r = 0.79; P < 0.001). The observed correlations were higher for smaller boats – singles, doubles, and pairs (r = 0.64–0.92; P ≤ 0.025) – than for larger boats – quads, fours, and eights (r = 0.31–0.70; P ≤ 0.039). Linear regression analyses were used to construct regression equations to predict final rankings based on 2000-m rowing ergometer performance times for each event. Although correlations in 10 of the 13 events were above r = 0.5, the large standard errors of the estimate impaired the prediction of rankings in all of the studied events. Using these equations, the most probable rowing ergometer performance times required for a particular ranking in a given rowing event might easily be calculated.  相似文献   

8.
We evaluated the impact of bilateral leg extension power and fat-free mass on 2000?m rowing ergometer performance in 332 young oarsmen (age 21±2 years, height 1.76±0.05?m, body mass 62±6?kg; mean±s). The 2000?m rowing performance time was correlated with height (1.62–1.93?m; R 2?=?0.23, P?<0.001), body mass (53–95?kg; R 2?=?0.53, P?<0.001), fat-free mass (47–82?kg; R 2?=?0.58, P?<0.001) and bilateral leg extension power (1202–3302?W; R 2?=?0.38, P?<0.001). Multiple regression analysis selected fat-free mass and bilateral leg extension power as regressor variables. Fat-free mass explained 58% of the variability in rowing performance and the inclusion of bilateral leg extension power improved the power of prediction by 5%. The results suggest that rowing involves almost every muscle in the body and that bilateral leg extension power is very important during this activity.  相似文献   

9.
The aims of this study were to evaluate the accuracy of centre of pressure (COP) data obtained during transition of load across the boundary between two force plates, and secondly to examine the effect of such COP data on joint kinetics during sprint running performances. COP data were collected from two piezoelectric force plates as a trolley wheel was rolled across the boundary between the plates. Position data for the trolley were collected using an opto-electronic motion analysis system for comparison with COP data. Mean COP errors during transition across the plate boundary were 0.003 ± 0.002 m relative to a control point. Kinematic and kinetic data were also collected from eight athletes during sprint running trials to demonstrate the sensitivity of the inverse dynamics analysis to COP error for the ground contact phase of the dynamic movement trials. Kinetic sensitivity to the COP error was assessed during the entire stance phase for the ankle, knee, and hip joints and was less than 5% and 3% for joint moment and power data, respectively. Based on the small COP error during transition across plate boundaries, it is recommended that foot contacts overlapping two force plates may be included in inverse dynamics analyses.  相似文献   

10.
ABSTRACT

Post-activation potentiation likely acutely improves power-based performance; however, few studies have demonstrated improved endurance performance. Forty collegiate female rowers performed isometric potentiating (ISO), dynamic potentiating (DYN) and control (CON) warm-up protocols on a rowing ergometer, followed by a three-minute all-out test to evaluate their total distance, peak power, mean power, critical power, anaerobic working capacity (W’) and stroke rate. Fifteen-second splits were also analysed. ISO consisted of 5 × 5-second static muscle actions with the ergometer handle rendered immovable with a nylon strap, while DYN consisted of 2 × 10-second all-out rowing bouts, separated by a 2-minute rest interval. The participants were divided into high and low experience groups by median experience level (3.75 years) for statistical analysis. Significant differences (DYN > CON; p < 0.05) were found for distance (+5.6 m), mean power (+5.9 W) and W’ (+1561.6 J) for more experienced rowers (n = 19) and no differences for less experienced rowers (n = 18). Mean power in DYN was significantly greater than CON and ISO in the 15–30, 30–45, 45–60 and 60–75 second intervals independent of experience level. These results suggest that DYN may benefit experienced female rowers and that these strategies might benefit a greater power output over shorter distances regardless of experience.  相似文献   

11.
The rowing stroke is a leg-driven action, in which forces developed by the lower limbs provide a large proportion of power delivered to the oars. In terms of both performance and injury, it is important to initiate each stroke with powerful and symmetrical loading of the foot stretchers. The aims of this study were to assess the reliability of foot force measured by footplates developed for the Concept2 indoor ergometer and to examine the magnitude and symmetry of bilateral foot forces in different groups of rowers. Five heavyweight female scullers, six heavyweight female sweep rowers, and six lightweight male (LWM) rowers performed an incremental step test on the Concept2 ergometer. Vertical, horizontal, and resultant forces were recorded bilaterally, and asymmetries were quantified using the absolute symmetry index. Foot force was measured with high consistency (coefficient of multiple determination>0.976 ± 0.010). Relative resultant, vertical, and horizontal forces were largest in LWM rowers, whilst average foot forces significantly increased across stroke rates for all three groups of rowers. Asymmetries ranged from 5.3% for average resultant force to 28.9% for timing of peak vertical force. Asymmetries were not sensitive to stroke rate or rowing group, however, large inter-subject variability in asymmetries was evident.  相似文献   

12.
The purpose of this work was to develop a new 2D gymnast-high bar model with horizontal bar endpoint dynamics included. To this end, a three-spring high bar model was extended with a five segment gymnast model followed by evaluation and sensitivity analysis. Evaluation over more than a complete giant swing (420°) was favourable (bar position rms errors <0.017 m, center of mass angular position rms error <11°). Single parameter perturbations (10%) caused little deterioration in model performance (lower 180°of the giant swing-bar position rms errors <0.006 m, arms’ angle rms error <0.9°). Combinations of parameter perturbations gave bar position rms errors <0.008 m and arms’ angle rms error <1.8°. Model performance was most sensitive to errors in high bar stiffness values.  相似文献   

13.
Abstract

It has been suggested that a greater number of injuries during the last third of practice sessions or matches could be related to alteration of lower limb neuromuscular control due to neuromuscular fatigue. This fatigue-related effect can be mediated by changes in joint proprioception. In athletes, the use of functional fatigue protocols could have the advantage of mimicking the demands of sporting activity, thus reflecting more specifically the changes in neuromuscular control and proprioception observed in sport settings. The purpose of the present study was to assess the effect of fatigue induced by a volleyball match on knee joint position sense in elite volleyball players. Seventeen female volleyball players aged 18.9±4.2 years from the Portuguese national team volunteered for the study. Knee joint position sense was evaluated by an open kinetic chain technique and active knee positioning, and was reported using absolute, relative, and variable angular errors. Joint position sense measures were obtained before and immediately after a simulated volleyball match of five sets. To ensure that the match was sufficiently intense to induce fatigue, the perceived exertion or exercise intensity was assessed at the end of the match using Borg’ s rating of perceived exertion (RPE) scale. All participants completed the volleyball match (90min duration), reaching or exceeding 15 on the RPE scale (15.59±0.71; range 15–17), equivalent to “hard/heavy work”. After the volleyball match, a significant increase in absolute (2.11°) and relative (1.71°) angular errors was detected. Match-induced fatigue significantly exacerbated the overestimation of the test position. Moreover, the reliability and accuracy in estimating knee angles decreased from rest to the fatigued state, as shown by the increase (264%) in variable error. Our results show that fatigue induced by a volleyball match has a marked effect on knee joint position sense in elite female volleyball players. Knee joint position sense was less accurate and less consistent after the volleyball match. Fatigue induced by a simulated competitive volleyball match resulted in proprioceptive deficits, decreasing sensorimotor system acuity in female volleyball players.  相似文献   

14.
Abstract

The purpose of the present study was to examine whether static and dynamic balance control are related to neuromuscular function and ageing. For this purpose, we constructed a new dynamic balance measurement system that simulates natural falling. Ten young (age 21–31 years) and 20 elderly (age 60–70 years) men participated in the experiment. Maximal isometric torque (MVC) and activation level were measured from the quadriceps and plantar flexor muscles. The H-reflex, V-wave, and maximal M-wave were measured from the soleus muscle. In dynamic balance control, anterior-posterior centre-of-pressure swaying was 74±8.1 mm in the young men and 91.5±19.4 mm in the elderly men (P<0.05), whereas in the static condition there were no significant differences between the two groups. Knee extension MVC (young: 181±42 N·m; elderly: 135±39 N·m; P<0.01), torque after 500 ms (young: 147±36 N·m; elderly: 108±39 N·m; P<0.05), and activation level (young: 96.2±0.8%; elderly: 93.8±2.1%; P<0.01) were higher in the young than the elderly men; no differences were observed in plantar flexion. The amount of re-stabilization after a sudden disturbance seems to be an age-related phenomenon, which is seen as a connection between balance control and rapid force production.  相似文献   

15.
Abstract

In this study, we evaluated the extent to which 2000-m rowing ergometer performance times predicted final rankings at the World Rowing Championships in a sample of 638 rowers of both sexes and body-mass classifications (i.e. open-category and lightweight rowers). Rowing ergometer performance times were examined using a questionnaire, and in 17 of 23 events they were positively correlated (P ≤ 0.049) with the final rankings at the Championships. The highest correlations were for the ergometer performance times achieved by rowers in lightweight men's single sculls (r = 0.78; P = 0.005), women's single sculls (r = 0.75; P = 0.002), men's single sculls (r = 0.72; P = 0.004), and lightweight men's double sculls (r = 0.72; P < 0.001). We used linear regression to establish regression equations to predict final rankings based on 2000-m rowing ergometer performance times for each event in which there was a correlation greater than r = 0.50. Although correlations in 12 events met this criterion, the large standard errors of the estimate hindered ranking predictions in all of the studied events. Regression equations could be used to determine the most probable 2000-m ergometer performance time for a rower to achieve specific rankings at the World Rowing Championships.  相似文献   

16.
17.
It is commonly believed that a torn ACL or a damaged meniscus may be associated with altered knee joint movements. The purpose of this study was to measure the tibiofemoral kinematics of ACL deficiency with concomitant meniscus deficiency. Unilateral knees of 28 ACL deficient participants were studied while ascending stairs. Among these patients, 6 had isolated ACL injuries (group I), 8 had combined ACL and medial meniscus injuries (group II), 8 had combined ACL and lateral meniscus injuries (group III) and 6 had combined ACL and medial-lateral meniscus injuries (group IV). Both knees were then scanned during a stair climb activity using single fluoroscopic image system. Knee kinematics were measured at 0°, 5°, 10°, 15°, 30° and 60° of flexion during ascending stairs. At 0°, 15° and 30° flexion of the knee, the tibia rotated externally by 13.9 ± 6.1°,13.8 ± 9.5° and 15.9 ± 9.8° in Group I. Group II and III exhibited decreased external rotation from 60° to full extension. Statistical differences were found in 0°, 15°and 30° of flexion for the 2 groups compared with Group I. In general, the tibia showed anterior translation with respect to the femur during ascending stairs. It was further determined that Group III had larger anterior translation compared with Group IV at 0° and 5° of flexion (?6.9 ± 1.7 mm vs. 6.2 ± 11.3 mm, P = 0.041; ?9.0 ± 1.8 mm vs. 8.1 ± 13.4 mm, P = 0.044). During ascending stairs the ACL deficient knee with different deficiencies in the meniscus will show significantly different kinematics compared with that of uninjured contralateral knee. Considering the varying effect of meniscus injuries on knee joint kinematics, future studies should concentrate on specific treatment of patients with combined ACL and meniscus injuries to protect the joint from abnormal kinematics and subsequent postoperative degeneration.  相似文献   

18.
The deflection of rowing oar shafts subjected to a static load was investigated. Two sets of sculling oars of different design stiffness were tested at three different lengths from 2.66 to 2.70 m. Loads up to 201 N were applied to the blade end of the oar shafts, and deflections were measured at six positions along the length of the shafts. The experimental results were compared with theoretical predictions obtained by modelling the oar shafts as homogenous end-loaded cantilever beams. The results show that the oar shafts are not uniform, in contradiction to the assumed model, but rather are most compliant near the sleeves and up to 80% stiffer towards the blades. The effect of oar shaft stiffness and length on the deflection angle at the blade end of the oar shaft was at most 1.18 ± 0.01°. The measured variation of stiffness along the shaft has implications for boat propulsion and rowing performance.  相似文献   

19.
Book Review     
Abstract

The mechanical responses (i.e. external contact forces and external power) of 25 elite rowers to a race-pace rowing protocol were investigated on the traditional fixed stretcher mechanism and the more recently introduced free-floating stretcher mechanism rowing ergometers. Using a Rowperfect rowing ergometer for both conditions, external contact forces at the handle, stretcher and sliding seat, as well as the displacements of the handle and stretcher, were recorded. The external power was calculated as the product of the force and velocity data from both the handle and stretcher. Significant differences (P < 0.05) between the two conditions for each mechanical parameter were observed. The fixed condition showed larger maximum values for forces and external power and average power throughout the rowing cycle. Moreover, rowing with the fixed mechanism generated higher inertial forces during the transition between the propulsion and recovery phases, especially at the catch of the cycle. The results suggest that: (i) muscular coordination may differ according to the stretcher mechanism used, which could have an impact on the physiological adaptations of muscles; and (ii) the free-floating mechanism may induce lower catch and maximum values for net joint forces and net joint moments that could decrease the risk of injury.  相似文献   

20.
Rowers need to combine high sprint and endurance capacities. Muscle morphology largely explains muscle power generating capacity, however, little is known on how muscle morphology relates to rowing performance measures. The aim was to determine how muscle morphology of the vastus lateralis relates to rowing ergometer performance, sprint and endurance capacity of Olympic rowers. Eighteen rowers (12♂, 6♀, who competed at 2016 Olympics) performed an incremental rowing test to obtain maximal oxygen consumption, reflecting endurance capacity. Sprint capacity was assessed by Wingate cycling peak power. M. vastus lateralis morphology (volume, physiological cross-sectional area, fascicle length and pennation angle) was derived from 3-dimensional ultrasound imaging. Thirteen rowers (7♂, 6♀) completed a 2000-m rowing ergometer time trial. Muscle volume largely explained variance in 2000-m rowing performance (R2 = 0.85), maximal oxygen consumption (R2 = 0.65), and Wingate peak power (R2 = 0.82). When normalized for differences in body size, maximal oxygen consumption and Wingate peak power were negatively related in males (r = ?0.94). Fascicle length, not physiological cross-sectional area, attributed to normalized peak power. In conclusion, vastus lateralis volume largely explains variance in rowing ergometer performance, sprint and endurance capacity. For a high normalized sprint capacity, athletes may benefit from long fascicles rather than a large physiological cross-sectional area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号