首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
我们知道:在圆中一条弦(在弦的同侧)所对的圆周角大于圆外角.本文将利用这个性质先证明一个定理,再举例说明该定理的应用.图1定理如图1,若PA⊥平面ABC,则∠BAC>∠BPC.证明作△ABC外接圆,又因为BP>BA,CP>CA,所以若将△PBC翻折到与△ABC共面,则A点在圆上,P点必在圆外,且A点、P点在弦BC的同侧.由圆的性质可知:∠BAC为圆周角,∠BPC为圆外角,且这两个角都在弦BC的同侧,故∠BAC>∠BPC.下面举例说明该定理的应用.图2图3例题如图2所示,A是△BCD所在平面外一点,AB=AD,∠ABC=∠ADC=90°,E是BD的中点.(1)求证:平面AEC⊥平…  相似文献   

2.
李新卫 《考试》2014,(4):12-15
<正>与圆有关的问题能很好的反映平面几何的主体知识,是高考中平几部分的主考点。1.直径直径所对的圆周角为直角,直角圆周角所对的弦为直径。例1如图1,已知BC为半圆O的直径,AB=AF,AC与BF交于点G,AD⊥BC于D,交BF于E,求证:BE=EG.思路:由BC为半圆O的直径,得∠BAC=90°.由直角三角形斜边上中线的性质,只要证EA=EB或EA=EG即可.如要证EA=EB,只需证∠1=∠4,由=,得∠5=∠4,又∠5=∠1,则  相似文献   

3.
例1如图1,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD-LBE,AD=BC.  相似文献   

4.
1992年上海市初中升学考试试卷中有如下一道题: 如图(图略),已知在圆内接四边形ABCD中,AD≠AB,∠DAB=90°,对角线AC平分∠DAB。(1)求证:DC=BC;(2)设AD=a,AB=b,求AC的长。对于第(1)小题,比较简便的证法是用圆周角的性质和等弧对等弦定理来进行证明。证法一:∵AC平分∠DAB, ∴∠DAC=∠BAC, ∴(?)=(?),∴DC=BC。比较多的学生运用圆周角性质和等腰三角  相似文献   

5.
1979年,首次全国中学数学竞赛二试的题六是:如图1,两圆O1,O2相交于点A,B,圆O1的弦BC交圆图1O2于点D,圆O2的弦BF交圆O1于点E,证明:(1)若∠CBA=∠FBA,则CD=EF;(2)若CD=EF,则∠CBA=∠FBA.证明连接AC,AD,AE,AF,则∠ACD=∠ACB=∠AEF,∠ADC=∠AFB=∠AFE,而有△ACD∽△AEF,从而有ACAE=CDEF,于是CD=EFAC=AE)AC=)AE∠CBA=∠FBA.  相似文献   

6.
例1(2011年四川泸州中考)如图*,点P为等边△ABC外接圆周劣弧BC上的一点.(1)求∠BPC的度数;(2)求证:PA=PB+PC;(3)设PA,BC交于点M,若AB=4,PC=2,求CM的长度.解析:这是一例延用许多年的经典问题.其中(1)较为简单,由"圆周角"定理易知:∠APB=∠ACB=60°,∠APC=∠ABC=60°,则∠BPC=∠APB+∠APC=60°+60°=120°.对于(3),解法较少,不做过多探究:由∠ABM=∠CPM,∠AMB=∠CMP,可得△ABM∽△CPM,则AMCM=BMPM=ABPC=42=2,设CM=x,则AM=2x,结合BC=AB=4,可知BM=  相似文献   

7.
点评圆中找等角常用同弧所对圆周角,但本题∠BCE并不是圆周角,于是通过Rt△CEB,Rt△DAB找互余角.其实考查了直径所对圆周角是直角、同圆中等弦(弧)所对圆心角相等等知识.  相似文献   

8.
在《圆》的一章中,有如下的定理:“同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。”这条定理,人们常简化为“等角对等弧”。如果把它推广到不等的圆中,就可得到推论: 相等度数的弧所对的圆周角相等;在不等的圆中,相等的圆周角所对的弧的度数也相等。应用这条推论,在解决不等圆的有关问题中可以带来方便。例1 已知两圆相交于A、B两点,AC、AD分别为两圆过点A的切线,各交圆于C、D两点,求证∠ABC=∠ABD。证:∵∠CAD是两圆  相似文献   

9.
题目 已知:如图1,四边形ABCD中,AD//BC,点E是CD的中点,连结AE,BE,AD BC=AB.求证:∠1=∠2,∠3=∠4.  相似文献   

10.
翟士波 《初中生》2018,(3):25-27
在圆中,圆心角与圆周角是最常见的角.它们与弦、弧和扇形的联系比较密切,是中考命题的重点.下面举例说明圆中角的各种应用. 一、求角的大小 1.利用圆心角求圆周角 例1如图1,△ABC内接于⊙O,且OB⊥OC,则∠A的度数是() A.90°.B.50°.C.45°.D.30°. 解:∵OB⊥ OC,∴∠BOC=90°,∴∠A=1/2∠BOC=45°.选C. 温馨小提示:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.  相似文献   

11.
题目如图1,PA、PB、PC是⊙O的三条弦,PA=a,PB=b,∠APC=30°,∠BPC=60°,求弦PC的长.下面我们以此题为例来分析关于计算弦长的几种方法.解法一:灵活作垂线如图2,连结AB、AC,过点A作AE⊥PC于点E.在Rt△APE中,因为∠APC=30°,PA=a,所以AE=a2,PE=3姨a2.又因为∠ACP=∠PBA,∠AEC=90°,∠APB=∠APC ∠BPC=90°,所以△ACE∽△ABP.P图1COAB图2COPABE所以ECEA=PBPA,所以EC=EA·PBPA=a2·ba=b2,所以PC=PE CE=3姨a b2.解法二:巧用面积法如图3,连结AB、AC、BC,过点A作AE⊥PC于点E,过点B作BF⊥PC于点F.因…  相似文献   

12.
在圆中,圆心角与圆周角是最常见的角.它们与弦、弧和扇形面积的联系比较密切,是中考命题的重点.下面以2016年的中考题为例,说明圆中角的各种应用. 一、求角的大小 1.利用圆心角求圆周角 例1(2016年绍兴卷)如图1,BD是⊙O的直径,点A、C在⊙O上,(AB)=(BC),∠AOB=60°,则∠BDC的度数是( ) A.60°.  B.45°.  C.35°.  D.30°. 解析:连接OC,∵(AB)=(BC), ∴∠BDC=1/2 ∠BOC=1/2 ∠AOB=1/2×60°=30°.选D.  相似文献   

13.
有关圆的问题是中考常见题型,当题目中没有给出确定的图形时,由于点、线与圆的位置关系不明确,常常会出现双解或多解.因此,解这类题要全面、周密,以防漏解.例1在⊙O中,圆心角∠AOB的度数是100°,则弦AB所对的圆周角的度数是.分析:如图1,弦AB所对的圆周角有两个,顶点分别在弧A 和弧AD 上,它们互补,度数应为50°或130°.例2如图2,已知AB是⊙O的直径,AC是弦,AB=2,AC=2√,在图中画出弦AD,使AD=1,则∠CAD的度数为.分析:弦AD与AC在直径AB的同侧时,∠CAD的度数为60°-45°=…  相似文献   

14.
在中学数学学习过程中 ,将一些题目进行变式练习 ,有利于开阔同学们的思路 ,培养创造性思维能力 ,提高归纳、总结、发现规律的能力。图 1问题 :如图 1 ,C是线段AB上的一点 ,分别以AC、BC为边在AB的同侧作等边三角形ACD和等边三角形BCE ,边接AE、BD 求证 :AE =BD 证明 :△ACD和△BCE是等边三角形 ∠ 1 =∠ 3=6 0° ∠ACE =∠BCDAC =CD ,BC =CE △ACE≌△DCB图 2 AE =BD 变式一 :将点C改在AB的延长线上 ,如图 2。证明 :△ACD与△BCE是等边三角形 AC =CD ,BC =CE∠C =∠C △ACE≌△DCB AE =BD 变式二 :点C…  相似文献   

15.
在解决圆的有关问题时,常常需要添加辅助线,圆中辅助线的作法较多,变化万千,这里举例介绍几种常见的辅助线的作法.例1如图1,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证证法:A一C平分∠DAB.连结BC.∵AB为⊙O的直径,∴∠ACB=90°,∴∠1 ∠B=90°.又AD⊥DC,∴∠ADC=90°,∴∠2 ∠3=90°,又DC为⊙O切线,∴∠3=∠B.由上可知:∠1=∠2,∴AC平分∠DAB.点拨当圆中出现直径时,常构造“直径上的圆周角”,以便利用直径上的圆周角是直角的性质.证法二连结OC.∵DC为⊙O的切线,∴OC⊥DC.∵AD⊥DC,∴OC∥AD,…  相似文献   

16.
<正>1模型初探如图1,AB是⊙O的直径,沿BC折叠圆,使■交直径AB于点D,连接AC,DC,则AC=DC.证明一如图2,记点D关于BC的对称点为D',连接CD',BD',则DC=D'C.由折叠可知,∠D'BC=∠DBC,根据"在同圆中,相等的圆周角所对的弦相等"得,AC=D'C,所以AC=DC.  相似文献   

17.
<正>《初中数学教与学》曾刊登了一篇题为《巧构几何模型妙解倍角问题——一道数学试题解法的再探究》的文章,原文分享了全等及等腰三角形的构造,思维甚是巧妙.本文着重探究例题中求解角度的简易方法,以期与广大读者分享交流.我们知道,"在同圆或等圆中,同弧(弦)所对的圆周角相等",由此可得以下两个结论.定理1如图1、2,已知∠A=∠D,则点A,B,C,D四点共圆.  相似文献   

18.
[1]将命题1: 如图1,PA切⊙0于A,弦AB,AC交OP于M,N,BC交OP于Q,则∠1=∠2←→∠3=∠4.  相似文献   

19.
不少几何题,可由题设及图形特征,通过边计算边推理进行证明。这是几何证明中常常采用的一种证题方法。 例1 已知:如图1,在△ABC中,∠C=90°,D和E是斜边AB上的点,且AD=AC,BE=BC。求证:∠ECD=45°。证明 ∵ AD=AC,BE=BC。 ∴ ∠1+∠2=∠4=∠3+∠B,① ∠1+∠3=∠5=∠2+∠A,②  相似文献   

20.
[题目 ]如图 (1),⊙ O1和⊙ O2外切于点 A, BO是⊙ O1和⊙ O2的公切线, B, C为切点,求证 AB⊥ AC.(初中《几何》第三册 144页例 4) 适当改变题目的条件、结论,通过猜想、归纳,引申为以下几题 . 1改变两圆的位置关系,由外切变为相交 . [题 1]如图 (2),⊙ O1和 O2相交于 A1, A2两点, BC是⊙ O1和⊙ 2的公切线, B, C为切点 .求证∠ BA1C+∠ BA2C=180° . 证明:连结 A1A2, ∵ BC与⊙ O1相切于点 B, ∴∠ A2BC=∠ BA1A2. 同理,∠ A2CB=∠ CA1A2. ∴∠ A2BC+∠ A2CB=∠ BA1A2+∠ CA1A2=∠ BA1C. …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号