首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一般地说 ,一次函数y =kx +b不存在最大值或最小值 .但是 ,当给出了自变量x的取值范围这一特殊条件后 ,函数值y就可能有最值 .例如 ,一次函数y =kx+b ,x1≤x≤x2 .若k >0 ,如图 1 ,则y值随x的增大而增大 ,当x =x1时 ,y有最小值y1,当x =x2 时 ,y有最大值y2 ;若k <0 ,如图 2 ,则y值随x的增大而减小 ,当x =x1时 ,y有最大值y1,当x =x2 时 ,y有最小值y2 .图 1图 2例 1 已知关于x的方程x2 - 2x +k =0的实数根x1、x2 ,且y =x3 1+x3 2 .试问 :y是否有最大值或最小值 ?若有 ,试求出其值 ;若没有 ,请说明理由 .( 1 999,天津市中考题 )解 :由根与系数…  相似文献   

2.
在各地中考试题中,出现了两类应用一次函数解经济型应用题,现归纳如下: 一、建立一个一次函数模型在一次函数y=kx+b(k≠0)中,设x取x1、x2时,y的对应值分别是y1,y2,当x1≤x≤x2时,函数图象是线段,函数有最值:(Ⅰ)若k>0,y随x的增大而增大,如图1,当x=x1时,y最小值=y1;当x=x2时,y最大值=y2.(Ⅱ)若k<0,y随x增大而减小,如图2.当x=x1时,y最大值=y1;当x=x2时,y最小值=y2.  相似文献   

3.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

4.
例1(第18届江苏省竞赛题)已知x,y,z都是实数,且x2+y2+z2=1,则m=xy+yz+zx()A.只有最大值B.只有最小值C.既有最大值又有最小值D.既无最大值又无最小值解由0≤(x+y+z)2=x2+y2+z2+2(xy+yz+zx)=1+2m,得m≥-1/2.  相似文献   

5.
课时一 一次函数在某个变化过程中 ,有两个变量 x和 y,如果给定一个 x值 ,相应地就确定了一个 y值 ,我们称 y是 x的函数 ,若它们间的关系式可以表示成 y =kx + b ( k、b为常数 ,k≠ 0 )的形式 ,则称 y是 x的一次函数 .特别地 ,当 b =0是 ,y =kx,称 y是 x的正比例函数 .当式中的 k >0时 ,y随 x的增大而增大 ;当 k <0时 ,y随 x的增大而减小 .基础练习1.填空题( 1)已知 y =- 34 x + ( a + 1) ,当 a =时 ,y是 x的正比例函数 ;( 2 )已知一次函数 y =1- x,y随 x的值增大而.( 3)已知一次函数 y =kx - 1,当 x的值增大 2 ,y的值也相应地增大 3,则 k …  相似文献   

6.
在应用题中 ,一次函数的最值应用极为广泛 .当谈到最大利润、最小成本等问题时 ,人们更多想到的是二次函数的最值问题(以后将会学到 ) ,而对用一次函数求最值却较少了解 .如果没有特定的限制 ,一次函数 y=kx +b(k≠ 0 )的自变量x的取值范围是一切实数 ,由一次函数的图像特征可以知道 ,一次函数没有最大(小 )值 .但是 ,当自变量在某个范围a≤x≤b内取值时 (a,b为实数 ) ,一次函数 y=kx +b却存在着最大、最小值 .这就为应用题中求最大最小问题提供了一条途径 .例 1 某公司在甲、乙两座仓库分别有农用车 12辆和 6辆 .现需要调往A县 10辆 ,调…  相似文献   

7.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

8.
《中学数学》2007年1月给出的征解题是:设x、y、z为非负实数,且x y z=32,求式子x3y y3z z3x的最大值.笔者经探讨,获得以下一般性结论:定理设x、y、z为非负实数,且x y z=k(k>0),记P=x3y y3z z3x,则P≤22576k4①当且仅当x=0,y=3z=43k或y=0,z=3x=43k或z=0,x=3y=43k时,①式取等号.为方便①式的证明,先给出如下引理:引理设x、y、z为非负实数,则当x≥y≥z或y≥z≥x或z≥x≥y时,x3y y3z z3x≥xy3 yz3 zx3②当x≤y≤z或y≤z≤x或z≤x≤y时,②式反向成立.证明②式等价于:[y (x-y)]3y y3[y-(y-z)] [y-(y-z)]3[y (x-y)]≥[y (x-y)]y3 y[y-(y-z)]3 [y-(…  相似文献   

9.
颜学华 《中学理科》2004,(10):41-41
现行高二 (上 )《数学》课本 (试验修订本必修 ) (人教版 ,2 0 0 0年第 2版 )第 1 0页例 1给出 :定理 1 已知x ,y都是正数 ,1 )如果积xy是定值P ,那么当且仅当x =y时 ,和x y有最小值 2p ;2 )如果和x y是定值S ,那么当且仅当x =y时 ,积xy有最大值 14 S2 .实际上 ,可把此最值定理推广为以下适用结论 .定理 2 设x ,y>01 )若xy =定值P ,则当且仅当 |x -y|取最小值时 ,x y取最小值 ;|x-y|取最大值时 ,x y最大值 ;2 )若x y=定值S ,则当且仅当 |x -y|取最小值时 ,xy取最大值 ;|x-y|取最大值时 ,xy取最小值 .证明 :1 )由x y =|x -y| 2 4…  相似文献   

10.
初三复习中,有些题目难度虽不大,但由于考虑不周密,解答中却常出现错误,现举例如下: 例1 已知(x y):z=(y z):x=(x z):y=k,求k的值. 误解:k=(x y):z=(y z):x=(x z):y=2(x y z):(x y z)=2。 解题过程似乎无懈可击,但此题实有两解,漏解原因在于解题中应用等比定理,把x y z当作不等于0的式子,而忽略了x y z=0的情况。 当x y z=0时。x y=-z;y z=-x;x z=-y;所以k=-1。 所以,本题有两解k=2或-1。  相似文献   

11.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

12.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

13.
本文就函数f(x)=x+k/x(k>0)的图像,性质及其变形和应用进行归纳总结并展开讨论.结论1函数f(x)=x+k/x(k>0)的图象及性质:(1)图象如右图所示:(2)性质:①是奇函数;②在区间(k,+∞)和(?∞,?k)上单调递增,在区间(?k,0),和(0,k)上单调递减;③在x>0时,有最小值2k,在x<0时,有最大值?2k;④存在两条渐近线为直线y=x和x=0.应用1试讨论y=b/a+a/b(ab≠0)的取值情况.解当ab>0时,y≥2;当ab<0时,y≤?2,评述构造函数y=x+1/x,充分利用性质③进行解题.应用2求函数y=x+4/(x?3)(x>3)的最小值.解y=x?3+4/(x?3)+3≥7,当且仅当x=5时等号成立.所以y的最小值为7.评述令…  相似文献   

14.
例1已知(x/(a-b))=(y/(b-c))=(z/(c-a)),求x+ y+z的值.解设(x/(a-b))-(y/(b-c))-(z/(c-a))=k,则x=k(a-b),y=k(b-c),z=k(c-a)于是x+y+z =k(a-b)+k(b-c)+k(c-a)=0,所以x+y+z=0.以上解法中,并没有具体求出x,y,z关于a,b,c的表达式.  相似文献   

15.
当一道数学题比较复杂,含有多个变量时,我们可选择其中某个变元为主,其他的变元为辅或当作常量进行研究,从而把多个变元问题转化成为一元 (或者少数元 )问题,这种解决问题的方法称之为主元法。下面通过问题的求解,谈谈选择主元在解题中的应用。   一、化简与求值   例 1已知 x+ 3y+ 5z=0,2x+ 4y+ 7z=0,求的值。分析:题设条件中含有 x, y, z三个变量,不妨选择其中 x,y为主元,将 z当作常量,解关于 x,y的方程组得, x=- ,y=- z,将 x,y的值代入原式可得所求值是。 例 2已知 x2+ 2y2=1,求 2x+ 5y2的最大值和最小值。  …  相似文献   

16.
一次函数y=kx b(k、b为常数,k≠0)的图象是直线,当k>0时,y随x增大而增大,k<0时,y随x增大而减小,但一般无最大(小)值.但是,当自变量取值范围是有限的数值时,其图象可能是线段、射线甚至是一些点.这时函数图象可能有最高点或最低点,即函数有最大值或最  相似文献   

17.
一、一次函数复习一次函数是一种比较简单的函数。解析式为y=kx+b(k≠0),它的图象是一条直线,在平面直角坐标系中,直线的位置、走向取决于k、x的值.当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.直线与x轴交点坐标是(-b/k,0),直线与y轴交点坐标是(0,b),掌握这些基本知识是解决有关一次函数问题的基础.  相似文献   

18.
一次函数y=kx+b(k≠0)在一般情况下是单调函数,没有最大值和最小值,但在某些特定情况下,比如对于一些特定的定义域,一次函数却存在最大值或最小值,尤其是应用题,常常附加某些特定条件,使一次函数附加了特定的定义域,于是,一次函数在特定的定义域内就有了最大值和最小值了,因此,对于一次函数的最值问题,切切不可等闲视之。  相似文献   

19.
求值类题型涉及的知识面广,解答方法十分灵活,稍不注意就会出现差错,且用下面两个例题说明之.例1 已知 x,y,z 为非0复数,且(x y)/x=(y z)/y=(z x)/z=k求复数 k 的值.解1:①当 x y z≠0时,由等比定理得  相似文献   

20.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号