首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
In recent years, much attention has been devoted to the design and operation of bearings made of elastic metal plastic (EMP). The surface of the bearing bush is covered by a layer of polymer PTFE(polytetrafluoroethylene). The physical performances of the polymer are quite different from that of metal. It can reduce friction because of its lower surface energy, and it is more difficult for the fluid to be adhered. Consequently, the slip will exist at the oil-bush interface. The journal bearings made of this material are researched in this article. Through test, the existence of slip is proven and the equation of the slip velocity for the EMP journal bearing is established when shear stress up to a certain value. Thus, the classical Reynolds equation is modified. The lubrication mechanism is analyzed by some simulation results.  相似文献   

2.
Elastic metal plastic (EMP) journal bearing is a kind of original bearing. Because of the specialty of the composite materials, elastic and thermal deformations of the EMP bush are much larger than that of common metal bush. In this paper, the three-dimensional mathematical model is established to analyze thermo-elasto-hydrodynamics (TEHD) of EMP. The numerical TEHD analysis software is programmed. An example is given to prove the lubrication performance of EMP. Supported by the National Natural Science Foundation of China (59775037)  相似文献   

3.
Effects of rarefaction on the characteristics of micro gas journal bearings   总被引:1,自引:0,他引:1  
Given the definition of the reference Knudsen number for micro gas journal bearings, the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas journal bearings based on Burgdorfer's first-order slip boundary condition is proposed that takes into account the gas rarefaction effect. The finite difference method (FDM) is adopted to solve the modified Reynolds equation to obtain the pressure profiles, load capacities and attitude angles for micro gas journal bearings at different reference K_nudsen numbers, bearing numbers and journal eccentricity ratios. Numerical analysis shows that pressure profiles and non-dimensional load capacities decrease markedly as gas rarefaction increases. Attitude angles change conversely, and when the eccentricity ratio is less than 0.6, the attitude angles rise slightly and the influence of the reference Knudsen number is not marked. In addition, the effect of gas rarefaction on the non-dimensional load capacity and attitude angle decreases with smaller bearing numbers.  相似文献   

4.
The effects of journal misalignment on the transient flow of a finite grooved journal bearing are presented in this study. A new 3D computational fluid dynamics (CFD) analysis method is applied. Also, the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearing and rotor dynamics is considered in the analysis. Based on the structured mesh, a new approach for mesh movement is proposed to update the mesh volume when the journal moves during the fluid dynamics simulation of an oil film. Existing dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The movement of the journal is obtained by solving the moving equations of the rotor-bearing system with the calculated film pressure as the boundary condition of the load. The data exchange between fluid dynamics and rotor dynamics is realized by data files. Results obtained from the CFD model were consistent with previous experimental results on misaligned journal bearings. Film pressure, oil film force, friction torque, misalignment moment and attitude angle were calculated and compared for misaligned and aligned journal bearings. The results indicate that bearing performances are greatly affected by misalignment which is caused by unbalanced excitation, and the CFD method based on the fluid-structure interaction (FSI) technique can effectively predict the transient flow field of a misaligned journal bearing in a rotor-bearing system.  相似文献   

5.
1 IntroductionThe great majority of docUments about magneticbearings dealt only with the characteristics when thejournal was concentric with the radial magnetic bearing inthe past, and few research involved the ones when thejournal was eccotic with the radial magnetic bearing.For example, the bulk of documents suPPosed thecomponents Fx and F. of magnetic force depended onlyon the cUrred in x and y direchons respeGtively, bac theair gap thickness and the curvatUre of suiface shape werenot co…  相似文献   

6.
Journal misalignment is common in journal bearings. When severe journal misalignment takes place, it affects nearly all aspects of bearing performance. This paper provided a comprehensive analysis of misaligned journal bearings based on two different mass-conservative models which appropriately took into account film rupture and reformation. The lubrication charac- teristics and performance parameters including the cavitation zones, pressure distribution, density distribution, oil leakage, load capacity, moment, and attitude angle were compared with the traditional lubrication model. The results showed that cavitation has great effect on bearing performances, especially when the surface roughness is large. Therefore, it is necessary to consider the effects of journal misalignment alongside inter-asperity cavitation theory in the design and analyses of journal bearings.  相似文献   

7.
This paper is based on the example of a radial magnetic bearing possessed of eight-pole, and derives the calculation formulas of static and dynamic mechanical characteristics of the bearing, in which the shape and curvature of surface, eccentricity and tilt of the journal are taken into account. Variations of the static and dynamic characteristics of the radial magnetic bearing versus static tilt parameters of journal are discussed. The outcomes show that the static tilt of the journal has influence on the mechanical characteristics of radial magnetic bearing, and change the static load capacity between two radial magnetic bearings and exert coupling effect between them. To study the dynamics of a practical rotor-magnetic bearing system, at least six stiffness coefficients in each radial magnetic bearing must be considered in ideal case, and twelve stiffness coefficients must be considered in general case of tilting journal. Such a find can be used for the coupled electromechanical dynamics analysis of rotor system equipped with magnetic bearings.  相似文献   

8.
一类改进的气体静压轴承压力场分布有限差分算法(英文)   总被引:1,自引:0,他引:1  
针对传统的静压气体轴承压力分布算法效率较低或收敛性较差等问题, 提出了一类改进的有限差分计算方法. 以小孔节流式的径向静压气体轴承的压力分布为对象, 采用有限差分法求解非线性雷诺气体润滑方程; 根据流量平衡原理, 提出了一种新型变步长逐步逼近迭代算法, 用于修正迭代过程中的供气口出口压力, 提高算法的效率和收敛性; 基于Matlab工具, 开发了一套通用的径向静压气体轴承的压力场分布计算软件. 算例结果表明: 所提出的改进有限差分法计算效率高, 稳定性好, 收敛快; 对于小间隙(小于2 μm)气膜, 此方法仍然有效并快速收敛.  相似文献   

9.
New numerical solution for self-acting gas journal bearings   总被引:1,自引:0,他引:1  
Taking a small pressure change in the gas film of self-acting gas-lubricated journal bearings into account, the corresponding nonlinear Reynolds equation is linearized through appropriate approximation and a modified Reynolds equation is derived and solved by means of the finite difference method (FDM). The gas film pressure distribution of a self-acting gas-lubricated journal bearing is attained and the load capacity is calculated. The numerical solution has a better agreement with experimental data than a direct numerical solution for different values of the bearing number. It is of interest to note that the eccentricity ratio, at which the new numerical solution is in better agreement with experimental data, is different when the bearing number is changing. The new numerical solution is slightly larger when the eccentricity ratio is smaller, and becomes slightly smaller when the eccentricity ratio is larger.  相似文献   

10.
The effects of journal misalignment on a journal bearing caused by an asymmetric rotor structure are presented in this study.A new model considering the asymmetric deflection is applied.Also,the thermo-hydrodynamic of the oil film in the journal bearing and straightforward elasticity theory are considered in the analysis.Based on the structure stiffness equivalent characteristic,a simple stepped shaft can reflect the entire complex structure model.The existing lubrication model,which does not consider this angle component,is not very precise for journal bearings.Film pressure,misalignment angle,velocity field,oil leakage,and temperature field were calculated and compared in the journal bearing analysis.The results indicate that bearing performances are greatly affected by misalignment caused by the asymmetric structure.A simple stepped shaft can effectively represent a misaligned journal bearing in a rotor-bearing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号