首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含参数的柯西不等式: (sum from i=1 to n(a_ib_i))~2=[(sum from i=1 to n(λ_ia_i)·(b_i/λ_i)]~2≤(sum from i=1 to n(λ_i~2a_i~2)(sum from i=1 to n(b_i~2/λ_i~2),其中λ_i>0 (i=1、2、…、n)。  相似文献   

2.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

3.
文章论述了偶然误差服从正态分布;推出了分布函数的均值及方差;求出方差的估计量σ~2=(1/n)(sum from i=1 to n((x-i)~2),指出函数f(x)由σ~2完全确定。继而论述了标准误差σ是偶然误差理论中的重要参数。意在呼吁在指导学生物理实验中应用标准误差进行误差分析。  相似文献   

4.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

5.
本文利用公式sum from k-1 to n(K=(n(n+1)/2))、sum from k-1 to n(K~2=(1/6)n(n+1)(2n+1))给出了六种不同的关于公式sum from k=1 to n(K~3=[n(n+1)/2)]~2)的建立方法。  相似文献   

6.
再谈一类分式不等式的证明   总被引:1,自引:0,他引:1  
文[1][2][3]分别从不同角度介绍了一类分式不等式的证明,但显得技巧性强,难以掌握,本文将从此类不等式的题源出发,证明之。 先看以下命题: 对a_i>0,b_i>0,(i=1,2,3,…,n)有 (sum from i=1 to n(a_i~2/b_i))≥(sum from i=1 to n(a_i))~2/(sum from i=1 to n(b_i)) (*)证明∵a_i>0,b_i>0(i=1,2,3,…,  相似文献   

7.
命题设χ_i,a_i∈R~ (i=,2,3……,n),且sum from i=1 to n(χ_i)=(定值),则当χ_i=m(a_i)~(1/2)/sum from i=1 to n(i=1,2,……,n)时,和sum from i=1 to n(a_i/χ_i)取最小值,其最小值为1/m((sum from i=1 to n(a_i~(1/2)))~2  相似文献   

8.
胡道煊同志在文[1]中曾绐出了如下的不等式:sum from i=1 to n((a_i~m)/(b_i))≥n~(2-m)·((sum from i=1 to n(a_i))~m/sum from i=1 to n(b_3))。(1)其中a_i、b_i>0,(i=1,2,…,n),且|m|≥1。 此处我们说(1)是一个不恒成立的不等式。例如取n=2,b_1=a_1,b_2=a_2,m=3/2,则有  相似文献   

9.
设a_1,a_2,…,a_n和b_1,b_2,…,b_n为两组实数,则有((sum from i=1 to n(a_ib_i))~2≤(sum from i=1 to n(a_i~2))(sum from i=1 to n(b_i~2)))。式中等号当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时成立。特别地,当b_1=b_2=…=b_n=1时,有 a_1~2 a_2~2 … a_n~2≥1/n(a_1 a_2 … a_n)~2。 以上第一个不等式称为柯西不等式,其证明方法很多,在此不再赘述。  相似文献   

10.
作为一名合格的中学教师,不仅要做到善于解题,而且也要做到善于编题.本文以Cauchy不等式(sum from i=1 to n(x_iy_i))~2≤(sum from i=1 to n(x_i~2))×(sum from i=1 to n(y_i~2)) (1)为基础,结合中学数学知识编拟了一些习题,对如何编写中学数学题做了一些探讨.  相似文献   

11.
著名的柯西不等式为 (sum from i=1 to n (a_i~2))(sum from i=1 to n (b_i~2))≥(sum from i=1 to n (a_ib_i))~2. (1) 关于(1)式,一般参考书上是采用构造函数,利用判别式间接进行证明的。本文首先给出(1)式的一个直接的简捷证明,然后利用算术-几何平均值不等式给出(1)式的指数推广。  相似文献   

12.
在柯西不等式:(sum from i=1 to n a_i~2)·(sum from i=1 to n b_i~2)≥(sum from i=1 to n a_ib_i)~2(其中a_i,b_i∈R,i=1,2,…,n)  相似文献   

13.
在我们平时的学习和考试中,都想快速解题,以减少运算时间,这需要掌握一些技巧,下面谈谈凑配常数的技巧。 例1 设α、b、c、d>0,且α b c d=1,求证:((4a 1)(1/2)) ((4b 1)(1/2)) ((4c 1)(1/2))) ((4d 1)(1/2))<6,1980年苏联列宁格勒数学竞赛题,我们将它推广并给出下限: 若sum from i=1 to n (a_i)=1,则(n 1)0) (1) 粗看(1)式感到棘手,特别是不等式的下限,但将常数进行凑配和巧妙的变形后,就会迎刃而解: 证明:∵sum from i=1 to n ((na_i 1)~2)~(1/2)≤n[(na_i 1)  相似文献   

14.
第四届(1989年)全国中学生数学冬令营试题的第二题是: 设x_1,x_2,…,x_n都是正数(n≥2),且sum from i=1 to n x_i=1,求证: 二/X。 sum from i=1 to n x_i/1-x_i~(1/2)≥sum from i=1 to n x_i~(1/2)/n-1~(1/2).(1) 本文对这道试题作出如下推广: 设x_1,x_2,…,x_n都是正数(n≥2),且sum from i=1 to n x_i=A>0,若α≥1,β>0,0<γ<1,  相似文献   

15.
Holder不等式在不等式理论与应用中有其特殊的效用.本文将着重介绍Holder不不等式的两个推论及它们的应用. Holder不等式的完整形式应是以下定理:若α_i>0,b_i>0(i=1,2,…,n),p,q满足1/p 1/q=1,则(1)若1相似文献   

16.
定理 P是凸n边形A_1A_2…A_n内一点,记∠PA_iA_(i 1)=α_i,i=1,…,n(A_(n-1)≡A_1),则 sum from i=1 to n(ctgα_i)≥sum from i=1 to n(ctgA_i ncsc(2π/n))。 (1) 证明 由正弦定理,得  相似文献   

17.
本文给出几种特殊数列的求和公式: 1、等差数列各项K次幂的和的递推公式。 2、等差数列与等比数列相应项之积的和的公式。 3、设(a_n)为等差数,公差为d,则 (1)sum from i=1 to n (a_ia_(i+k)…a_(1+k-1))=a_1a_2…a_k+(a_na_(n+1)…a_(n+k)-a_1a_2…a_(k+1))╱(k+1)d (2)sum from i=1 to n (1╱a_1a_2…a_(i+k-1))=1╱((k-1)d)(1╱a_1a_2…q_(n-1))-1╱(a_(n+1)a_(n+2)…a_(n+k=1))  相似文献   

18.
关于不等式multiply from i=1 to n(x_i+(1/x_i))≥(n+(1/n))~n(x_i为正数,sum from i=1 to n x_i=1)的正确性,《数学通讯》已有多篇文章给出了证明,本文将这个不等式推广到较一般的情形。从sum from i=1 to n x_i的值上推广有: 定理1 (1)如果x_i∈R+(i=1,2,…,n),  相似文献   

19.
1 测定某矿样中CaO含量时,得如下数据:37.45%,37.20%,37.50%,37.25%,37.30%,计算此结果的平均值、平均偏差和标准差,写出正式报告。解=37.45 37.20 37.50 37.25 37.30/5=37.34%=(sum from i=1 to n |d_i|)/n=(0.11 0.14 0.04 0.16 0.09)/5=0.11%S=(sum from i=1 to n d_i~2/(n-1))~(1/2) (((0.11)~2 (0.14)~2 (0.04)~2 (0.16)~2 (0.09)~2)/(5-1))~(1/2) =0.13%分析报告:n=5.=37.34%,S=0.13%对于误差和偏差、准确度和精密度的含义要清楚。2 下列各数的有效数字位数是几位?  相似文献   

20.
本文将切比雷夫不等式:“a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n(?)(sum from i=1 to n a~i)(sum from j=1 to n b_j)≤n sum from i,j to n a_ib_j”作如下的推广:如果{a_i}_(i=1)~n与{b_j}_(i=1)~n同时为单调增加或单调减少实数列,那么对于任何实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_ic_i)(sum from i=1 to n c_i)(?)(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j) ……(Ⅰ) 如果{a_i}_(i=1)~n与{b_j}_(j=1)~n中有一个单调增加而另一个单调减少,那么对于任何非负实实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_(ii))(sum from i=1 to n c_i)≤(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j)……(Ⅱ) 如果{c_i}_(i=1)~n为正的实数列,那么不等式(Ⅰ)、(Ⅱ)中的等号成立当且仅当{a_i}_(i=1)~n或{b_j}_(j=1)~n 中有一个是常数列。如果取c_i=1(i=1,2,…,n,那么就得原来的不等式。推广后的切比雷夫不等式的证明:在第一种情形下,sum from i=1 to n sum from j=1 to n (a~i-a_j)(b_i-b_j)c_ic_j  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号