首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、拼凑法的应用 在中学数学因式分解中,常常遇到诸如2x~2+xy-6y~2-4x+13y-6二次多项式的因式分解,对于这类问题,常用的方法有双十字相乘法、待定系数法等,但解题很麻烦且有一定难度。若用拼凑法,  相似文献   

2.
一类较复杂的多项式,通过变换和换元,可以化成二次三项式,以便运用十字相乘法进行因式分解.现举例如下.例1分解因式:(x~2+3x+4)(x~2+3x+5)一6.解设x~2+3x+4一y,则原式  相似文献   

3.
对某些数字系数的二次三项式(ax~2+bx+c)的因式分解,运用观察法,即“十字相乘法”便可完成。例如分解4x~2+15x+9,在草稿纸上写出,结果得4x~2+15x+9=(4x+3)(x+3)。这里我们提出问题是为什么不把4分成2×2,而分成4×1呢?不把9分成9×1,而分成3×3呢?在教学中若采用“十字相乘法”分解因式是“对角乘积之和等于一次项的系数”,也就是凭观察凑  相似文献   

4.
在中学数学中,因式分解是十分重要的,其问题变化万千,方法灵活多样.课本中介绍了提公因式法、运用公式法、分组分解法和简单的十字相乘法等基本方法及解答问题的基本原则:通过添项、拆项以制造公因式或便于利用公式.但在平时的解题过程中应先观察、分析问题的特点,不可拘于一格.一、十字相乘法十字相乘法,不仅可以用于一元二次式的因式分解,还对有些二元二次式以及更复杂式子的分解,也能进行.例1:分解3x2+5xy-2y2+x+9y-4.解:第一步,把原式整理成关于x(或者)y的一元二次式,而视y(或)x为常数,得3x2+(5y+1)x-(2y2-9y+4)在中学数学中,因式分解是…  相似文献   

5.
正随着新课改的不断深入,很多教师越来越重视课本中的例题教学了.大家的共识是:对课本中的例题进行变式教学,有利于提高数学课堂的教学效益.现举一例,说明如下.例题计算:(x-3)(x+3)(x~2+9).(苏科版七年级(下).解原式=(x~2-9)(x~2+9)=x~4-81.变式1计算:(1)(xy-3)(xy+3)(x~2y~2+9);(2)(x-3y)(x+3y)(x~2+9y~2);解(1)原式=(x~2y~2-9)(x~2y~2+9)=x~4y~4-81;  相似文献   

6.
“十字相乘法”是初中教材中应用较广的内容,但一般学生往往习惯于直接的应用,其实稍加变化,可应用得更灵活,并可从中培养学生灵活解题的能力,现举例说明如何更广泛地应用“十字相乘法”。例1 解方程2x~2+3x-5(2x~2+3x+9)~(1/2)+3=0。解:原方程可化为2x~2+3x+9-5(2x~2+3x+9)~(1/2)-6=0,如果我们以(2x~2+3x+9)~(1/2)作为一个变量X,则方程便是X~2-5X-6=0,用十字相乘法,得((2x~2+3x+9)~(1/2)-6)((2x~9+3x+9)~(1/2)+1)=0由(2x~2+3x+9)~(1/2)=6,解得x_1=-9/2,x_2=3。而(2x~2+3x+9)~(1/2)=-1,无解。经检  相似文献   

7.
因式分解是整式变形的一种重要手段 ,是后继学习——无论是分式、根式、方程 ,甚至高中解析几何等的重要基础 .在课本上 ,主要介绍了提取公因式 ,应用公式 ,分组分解以及十字相乘 (适用于二次三项式 )等方法 .对较复杂的多项式需综合、反复、多次 ,甚至变形应用这些方法 .如分解因式 :4 a2 - 4ab- 3b2 - 4a + 10 b- 3,由于前三项是二次三项式可先用十字相乘法得 :4 a2 - 4ab - 3b2 =( 2 a - 3b) ( 2 a + b)2 a2 a- 3b+ b原式 =( 2 a - 3b) ( 2 a + b) + ( - 4a + 10 b) - 3.这时再次应用十字相乘法 ,如图2 a- 3b2 a + b1- 3∴原式 =( 2 a - …  相似文献   

8.
一元二次方程ax~2+bx+c=0(a≠0)的求根公式x=(-b±(b~2-4ac)~(1/2))/(2a)是初等代数中一个比较重要的公式,除了用来求方程的根以外,在多项式的因式分解中还有其妙用。现举例如下。 一、分解二元二次多项式: 例1、分解因式6x~2-7xy-3y~2-x+7y-2  相似文献   

9.
《整式的乘除》一章乘法公式多,应用广泛,怎样用好这些乘法公式,现向同学们介绍一些常见的用法. 一、套用直接根据题中的特点套用乘法公式解题. 例1 计算(5x~2+3y~2)(5x~2-3y~2).(1993年宜昌市中考  相似文献   

10.
因式分解是初中数学教学的重点,亦是难点,正确选择分解因式的方法是学好因式分解的关键.提公因式法、公式法、十字相乘法、分组分解法是因式分解的四种基本方法.因此,分解因式时,要对多项式的特点进行认真分析.提公因式法的关键是确定多项式中各项的公因式;运用公式法要掌握每个公式的特点;十字相乘法适用于二次三项式或可化为二次三项式的多项式;分组分解法则适宜对四项式或四项以上的多项式.例1把12x~y~2-16x~2yz分解因式时,应提公因式为()A.2x~1y B.4x~3y~2 C.4x~2yz D.4x~2y分析用提公因式法分解因式,准确地确定公因式是首要一环,公因式的系数是原多项式各项系数的最大公约数,所以应排除A;公因式里的字母是原多项式中每项都有的,所以应排除C;公因式里字母的次数应取原多项式中这个字母的最低次数,所以应排除B.综上所述,本例应选D.例2把6a~2(x-y)2-3a(x-y)~3因式分解分析把(x-y)视为一个字母,再考虑系数和字母a.  相似文献   

11.
十字相乘法是因式分解的重要方法之一,一般应用于分解二次三项式ax2+bx+c.如果x,a,b,c都是代数式或至少有一个是代数式,经过适当恒等变形,再灵活运用十字相乘法,亦能将其进行因式分解,如下面几例.例1分解因式:(1)x4-13x2+36;(2)a2b2c4+5abc-14解题思路乍一看,这两个式子不是二次三项式,似乎不能运用十字相乘法,但是若将(1)变形为(x2)2-13x2+36,(2)变形为(abc)2+5abc-14把x2和abc分别当作x,两式仍然是二次三项式的形式,所以可用十字相乘法.例2分解因式:解题思路将x2+2x看作x,即可应用十字相乘法…  相似文献   

12.
一类五次系统的中心焦点判定   总被引:1,自引:0,他引:1  
给出五次系统x=λx-y+yR_2+xR_4,y=x+λy-xR_2+yR_4,R_2=b_1x~2++b_2xy+B_3y~2,R_4=a_4x~4+a_2x~3y+a_1xy~3+a_0y~4,在O(0,0)的各阶焦点量和O为中心的充要条件.  相似文献   

13.
在复习的基础上,将乘法公式变形,即可得到一些基本恒等式。这样做,既可加深学生对乘法公式的认识,又能提高他们分析问题、解决问题的能力。先看一个例子: 例1 已知 x+y+z=a,求证① xy+yz+zx≤1/3a~2; ② x~2+y~2+z~2≥1/3a~2. 证①∵ x~2+y~2+z~2-xy-yz-zx  相似文献   

14.
题目若3x~2-xy+3y~2=20,则8x~2+ 23y~2最大值是___.(第13届(02年)"希望杯"高二培训)分析1如果题中有类似x~2+y~2=r~2形式,可令{x=rcosα,进行三角换元.记t=8x~2 y=rsinα+23y~2,则可用三角换元.解法1记t=8x~2+23y~2,可设  相似文献   

15.
十字相乘法是分解二次三项式的重要方法之一,而用双十字相乘法分解三次或四次多项式有时会显得非常简捷、有效.所谓“双十字相乘法”是指画两组或三组十字交叉线来分解因式的方法.下面是笔者用这种方法分解三次多项式的一点尝试.  相似文献   

16.
在根式的乘法运算里,当两个含有根式的代数式P和Q相乘,如果它们的积R为有理式,那末这两个代数式P、Q叫做互为有理化因子。例如a(x~(1/2)) b(y~(1/2))和a(x~(1/2))-b(y~(1/2))  相似文献   

17.
形如ax~2+bx+c的代数式,叫做x的二次三项式。某些数字系数的二次三项式的因式分解,运用观察法,即十字相乘法,即可完成。例如:分解8x~2+27x+9的因式,我们在草稿纸上写  相似文献   

18.
<正>在高中学习圆的知识后,经常会遇到下面的这类问题:引例已知x~2+y~2-4x+1=0,(1)求■的取值范围;(2)求y-x的取值范围;(3)求x~2+y~2的取值范围.解法1 (几何法) x~2+y~2-4x+1=0变形为(x-2)2+y~2=3记为圆C.(1)■的几何意义为圆C上任意一点P(x,y)  相似文献   

19.
《九年义务教育三年制初级中学课本》代数第八章第四节介绍了因式分解的第四种基本方法——十字相乘法.详细讲述了形如x~2 (a b)x ab、a_1a_2x~2 (a_2c_1 a_1c_2)x c_1c_2、ax~2 bxy cy~2形式的因式分解.为提高学生分析问题、解决问题的能力,深化学生对十字相采法的理解,拓宽知识的应用面,对学有余力的学生可适当地讲解双十字相乘法在因式分解中的应用.  相似文献   

20.
例1.分解因式:x~2-4y~2。 解 x~2-4y~2=(x 2y)(x-2y) =x~2-4y~2。 剖析 本已分解,却又用整式乘法“还原”,这是初学者常犯的错误,问题在于不懂得因式分解的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号