首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人教版教材高中数学第二册上(必修)第30 页有这样一道习题 已知:a > b > c,求证: 1 1 1 > 0 . a ? b b? c c ? a 此题可推广如下: (1)已知 a > b > c,求证: a ? b b? c c ? a 1 1 4 ≥ 0 . 证明 ∵(a ? c)(a 1 1 ? b b ?c) =[(a ?b) (b ?c)](a ? 1 1 ≥ 4, b b ? c) ∴ ,  a ? b b ? c a ?c 1 1 ≥ 4 1…  相似文献   

2.
这是一道常见的题目:已知a、b、c∈R~ ,且a b c=1,求证:1/a 1/b 1/b≥9(*).灵活利用不等式(*)及其证法,我们可以巧妙地解答与之相关的数学命题.证明1:因为a、b、c∈R~ ,a b c=1.所以1/a 1/b 1/c=(a b c)/a (a b c)/b (a b c)/c=3 (b/a a/b)  相似文献   

3.
全日制普通高级中学教科书《数学》第一册(上)第136页的第7题是:已知a2,b2,c2成等差数列(公差不为0),求证:b+1c,c+1a,a+1b也成等差数列.此题的证明并不难,我们感兴趣的是该问题的逆命题成立吗?笔者发现:命题若b+1c,c+1a,a+1b成等差数列,则a2,b2,c2也成等差数列.证明由b+1c,c+1a,a+1b成等差数列可得b+1c+a+1b=c+2a,因此(a+b)(a+c)+(b+c)(c+a)=2(b+c)(a+b),即a2+c2=2b2.所以a2,b2,c2成等差数列.于是,我们有:定理1设a,b,c∈(0,+∞),则a2,b2,c2成等差数列的充要条件是b+1c,c+1a,1a+b成等差数列.波利亚在《怎样解题》一书中这样写道:当你发现了一…  相似文献   

4.
在比例中,合比定理即若a/b=c/d,则(a b)/b=(c d)/d,(1)但当a b≠0且c d≠0时,(1)还可写成: a/(a b)=c/c d 把(1)、(2)推广到不等式中,可得定理若a/b≥c/d,则 (a b)/b≥c d/d,(*) 若a/b≥c/d>0,则 a/(a b)≥c/(c d).(**) 证:∵a/b≥c/d, ∴a/b 1≥c/d 1, ∴(a b)/b≥(c d)/d。∵a/b≥c/d>0 ∴0相似文献   

5.
如果1/a 1/b 1/c=1/(a b c),则a,b,c三个数中必有两个互为相反数.分析要证明这一结论,只需证明a,b,c三数中必有两个数之和为0即可.证明由1/a 1/b 1/c=1/(a b c) (a b c)(bc ac ab)-abc=0 (a b)(a c)(b c)=0 a b=0或b c=0,或a c=0,即a,b,c三个数中必有两个互为相反数.下面介绍这一结论的具体应用.  相似文献   

6.
题 1 已知 a,b,c∈ R ,且 abc≤ 1 ,求证 :a bc b ca c ab ≥ 2 ( a b c) .(《数学通报》1 999年第 1期问题 1 1 71 )该题型新颖独特 ,其证法亦不多见 .贵刊仅在文 [1 ]中给出了一种证法 ,现笔者应用基本不等式简证如下 .证明 原式成立 a b c- c( a b c) c a b c- a( a b c) a a b c- b( a c) b≥ 2 . 1a 1b 1c- 3a b c≥ 2 . ( * )∵ 1a 1b 1c- 3a b c≥ 33abc- 13abc=23abc≥ 2 .(∵ 3a b c≤ 13abc)∴ ( * )成立 ,故原式证毕 .题 2 若 a,b,c∈ R ,abc=1 ,则aba3n 2 b3n 2 ab bcb3n 2 c3n…  相似文献   

7.
在文[1]中,陆爱梅老师提出一组四个猜想不等式: 猜想1 已知a,b,c是满足abc=1的正数,证明:a2/a3+2+b2/b3+2+c2/c3+2≤1/3(a+b+c); 猜想2 已知a,b,c是满足a+b+c=1的正数,证明:a2/b+c2+b2/c+a2+c2/a+b2>3/4; 猜想3 已知a,b,c是满足a+b+c=3的非负实数,证明:a+b/a+1+b+c/b+1+c+a/c+1≥3; 猜想4 已知a,b,c是两两不同的实数,证明:(a-b/a-c)2+(b-c/b-a)2+(c-a/c-b)2≥a2+c2/a2+b2+b2+a2/b2+c2+c2+b2/c2+a2.  相似文献   

8.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

9.
题目设a,b,c为正实数,且a+b+c=1,求证:(a2+b2+c2)(1/b+c+b/a+c+c/a+b)≥1/2.  相似文献   

10.
文[1]给出了关于三角形三边的Klamkin不等式:a/b+b/c+c/a≥1/3(a+b+c)(1/a+1/b+1/c)(1)的如下一个逆向形式:a/b+b/c+c/a≤1/3(a+b+c)(1/b+c-a+1/c+a-b+1/a+b-c)(2)  相似文献   

11.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

12.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

13.
文[1]中给出了下面的不等式:设a≥b≥c>0,则ba cb ac≥13(a b c)(a1 1b 1c).(1)本文先将不等式推广为:命题1设a≥b≥c>0,x≥y>0,则ba cb ac≥yx y(a b c)(1a 1b 1c) 3(xx- y2y).(2)证明a2b b2c c2a-(ab2 bc2 ca2)=(b-c)a2 (c2-b2)a (b2c-bc2)=(b-c)[a2-(b c)a bc]=(b-c)(a-b)(a  相似文献   

14.
37.已知正方形ABCD与正方形BEFG相连,且正方形ABCD的边长为a,求S△AFC.解:如图,连接BF,易证得AC∥BF.过点B、F分别作AC的垂线,垂足分别为M、N,则BM=FN.显然,则有S△AFC=S△ABC=12a2.38.若a,b,c∈R ,ab bc ca=1,求证:aa #!1 a2 b #!b1 b2 c #!c1 c2≤1.证明:分母有理化,得a$#!1 a2-a% b$#!1 b2-b% c$#!1 c2-c%≤1.上式等价于a#!1 a2 b#!1 b2 c#!1 c2≤1 (a2 b2 c2).(*)注意到1 a2=ab bc ca a2=(c a)(a b),1 b2=ab bc ca b2=(a b)(b c),1 c2=ab bc ca c2=(b c)(c a).那么,应用二元均值不等式,有a#!1 a2 b#"1 b2 c##1 c2=a#!(…  相似文献   

15.
文[I]提出了如下分式不等式: 命题1设a,b,c∈R+,且a+b+c=1,则a2+b3/b+c+b2+c3/c+a+c2+a3/a+b≥2/3(1)  相似文献   

16.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

17.
一个不等式的下界估计   总被引:1,自引:1,他引:1  
《数学通报》2 0 0 0年 5月号问题 1 2 52为 :设 a,b,c是周长为 1的三角形的三条边长 ,求证 :a2 b b2 c c2 a<18. ( 1 )这里 ,我们给出不等式 ( 1 )的下界估计 .定理 若 a,b,c是周长为 1的三角形的三条边长 ,则a2 b b2 c c2 a>2 32 1 6 . ( 2 )证明 不妨设 a≤ b,a≤ c,则 1 - 2 a≥ 1- 2 b>0 ,1 - 2 a≥ 1 - 2 c>0 .于是 ,( 1 - 2 a) 2 ( 1 - 2 b) ( 1 - 2 b) 2 ( 1 - 2 c) ( 1 - 2 c) 2 ( 1 - 2 a)≤ ( 1 - 2 a) [( 1 - 2 a) ( 1 -2 b) ( 1 - 2 b) ( 1 - 2 c) ( 1 - 2 c) 2 ]≤ ( 1 - 2 a) [( 1 - 2 b) ( 1 - 2 a 1 - 2 c) …  相似文献   

18.
在实践中,某些看似繁杂的最值问题,若借助于最大(小)值的定义,常能轻松突破. 例1 分别用max{x1,x2,…,xn},min{x1,x2,…,xn}表示x1,x2,…,xn中的最大值与最小值,若a b c=1(a,b,c∈R),则min{max{a b,b c,c a}}的值为( ) (A)1/3.(B)2/3.(C)1.(D)不确定. 解 设max{a b,b c,c a}=x,则 x≥a b,x≥b c,x≥c a,所以 3x≥2(a b c)=2,x≥2/3. (当且仅当a b=b c=c a,且a b c=1,  相似文献   

19.
数学问答     
问题 155.已知a、b、c是正实数且a b c=1,求证:1/a b 1/b c 1/c a≥9/2.  相似文献   

20.
文[1]给出了如下不等式:设a,b,c,d>0且a+b+c+d=1,则a/1+a+b/1+b+c/1+c+d/1+d<1/1+abcd (1) 文[2]给出了不等式(1)的一个类比 定理 设a,b,c,d>0且a+b+c+d=1,则a2/1+a2+b2/1+b2+c2/1+c2+d2/1+d2<1/1+a2b2c2d2(2) 并提出如下.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号