共查询到20条相似文献,搜索用时 31 毫秒
1.
尽管课程改革对几何问题进行简化。但许多学生对几何的学习仍然有点“害怕”。出于什么缘故呢?几何总是伴随着“已知”、“求证”,求证部分就是结论,做几何题就是通过充分的理由和合适的方法证明这个结论的成立。理由除了从已知条件中寻找,还要从已学过的知识库中寻找。理由充分后要组织过程的书写。 相似文献
2.
尽管课程改革对几何问题进行简化,但许多学生对几何的学习仍然有点害怕。出于什么缘故呢?几何总是伴随着已知、求证,求证部分就是结论,做几何题就是通过充分的理由和合适的方法证明这个结论的成 相似文献
3.
在平面几何中,不论是证明题,计算题,还是作图题,常常涉及到添作辅助线的问题.辅助线是沟通已知条件与结论的桥梁,使图形中的分散元素加以集中,为解题创造条件,因此,巧妙地添作辅助线,是解几何题的重要手段,变是分析问题,解决问题的一种能力.几何题千变万化,辅助线作法也是千变万化的.那么如何才能提高添作辅助线的能力呢?重要的是在平时多加思考、分析、不断积累经验,总结一些常用的辅助线的规律,并在实践中加以应用.另外,添辅助线目的必须明确,只有在不能直接证明出或不易证出题目结论时,再考虑辅助线,切勿贪多,随手乱作,这样有时会适得其反,线越多,形越乱,反而妨碍思考.添辅助线必须遵守基本作图法,满足基本作图原则,符合证明题的要求,辅助线通常画成 相似文献
4.
5.
6.
杨礼远 《黔东南民族师专学报》2003,21(6):106-106,108
几何命题题的证明在初中几何教学中是一个难点,但它对于培养学生的发散思维能力起到重大的促进作用,研究这类题的证明方法是中学数学教师提高教学效果的主要方法。 相似文献
7.
孙秀梅 《数学学习与研究(教研版)》2008,(2):4-5
常常有同学说:几何证明题不知道怎么样书写。有时写了很多,老师说太哕唆了,有时写得少,老师又说缺少步骤.那么怎样书写才正确呢?事实上。几何问题的证明是培养正确思维习惯的很好的学习过程,它能使人们养成缜密的思维习惯.在证明问题时.要说“因为……,所以……。”而得到的“所以……”,是以“因为……”而得到的直接结果. 相似文献
8.
同学们在解几何题时,常常发现已知条件中含有线段中点,这类问题应该怎样解决呢?本文举例说明解这类问题的常规思路和方法. 相似文献
9.
10.
1 分析法分析法就是从题目的结论出发 ,逐步找出使结论成立的原因 ,直到找出所用的原因恰好是题目的已知条件或所学过的定理 ,再按分析的思路从后往前把证题过程写出来 .图 1例 1 如图 1 ,△ABC中 ,∠A的平分线AD交BC于D ,⊙O过点A且与BC相切于D ,与AB、AC分别相交于E、F ,AD与EF相交于G .求证 :AF·FC =GF·DC .( 2 0 0 1 ,河南省中考题 )证题思路 :AF·FC =GF·DC AFDC=GFFC △DCF∽AFG(连结DF) ∠CDF =∠FAD∠C =∠AFG EF∥BC ∠EFD =∠CDF ∠EFD =… 相似文献
12.
几何命题题的证明在初中几何教学中是一个难点,但它对于培养学生的发散思维能力起到重大的促进作 用,研究这类题的证明方法是中学数学教师提高教学效果的主要方法. 相似文献
13.
平面几何的证明一般都是根据几何公理、定理进行逻辑推理论证 ,似乎与所学的锐角三角函数没有关系。事实上 ,借助于锐角三角函数证明几何题 ,则出奇制胜 ,巧妙之处 ,令人拍手叫绝。现举例如下 :一、求证线段及线段的乘方间的关系图 1例 1.已知 :如图 1,∠BAC=90°,AD⊥ BC,DE⊥ AB,DF⊥AC,垂足分别为 D、E、F,求证 :AB3AC3=BECF(教材第二册 5.4 B组第 3题 )证明 :设∠ C =α,则∠ BDE=∠DAE=α在 Rt△ABC中 ,tgα=ABAC,∴ AB3AC3=tg3α;在 Rt△ BED中 ,BE=DEtgα;在 Rt△ CFD中 ,FC=DFctgα;在 Rt△ AED中 ,tgα… 相似文献
14.
<正>许多几何问题可以通过添加辅助线,把已知图形补为轴对称图形,帮助我们发现图形中各元素间的内在联系,从而找到解题的思路.那么,哪些问题适用轴对称变换来解呢?笔者通过研究,认为具有如下特征的几何题,可以考虑用轴对称变换去解决. 相似文献
15.
16.
白安贵 《读与写:教育教学刊》2012,(3):113
几何题的证明有两大难点:一是分析证题思路,(包括添加辅助线);二是正确书写证题的过程。前者往往因添加不上适当的辅助线或思路不清,造成全题失分。后者多因证明过程中逻辑混乱,或缺少条件而造成严重失分。较复杂的几何题证明,通过分析即使证题思路清晰了,往往 相似文献
17.
在一些几何题中,当几何元素按一定的规律在确定的范围内变化时,某个与变动元素相联系的几何量却始终保持不变.这种不变量就是我们所要研究的几何定值.几何定值的证明方法很多,通常可以通过直接计算即可获得.下面不妨分类举例说明此种方法在证明几何定值问题中的应用,以飨读者. 相似文献
18.
初中《几何》第三册第144页例4:已知⊙O1与⊙O2相切于点A,CB是⊙O1与⊙O2的公切线,切点是C、B.求证:AB⊥AC。 相似文献
19.
20.
在平面几何中,用三角方法证题、解题,常常会收到良好的效果.因为运用三角方法,往往便于思考,而且由于三角公式较多,内在联系密切,证题,解题不仅速度快,而且准确度高.另外,在一般情况下,利用三角方法证题、解题,所作的辅助线也较简单,多数只要将多边形划分成若干个三角形,或者作出一些三角形的高(垂线)构成直角三角形. 相似文献