首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explores the impact of asking middle school students to generate drawings of their ideas about chemical reactions on integrated understanding. Students explored atomic interactions during hydrogen combustion using a dynamic visualization. The generation group drew their ideas about how the reaction takes place at the molecular level. The interaction group conducted multiple experiments with the visualization by varying the amount of energy provided to ignite the reaction. The generation group integrated more ideas about chemical reactions and made more precise interpretations of the visualization than the interaction group. Embedded assessments show that generation motivated students to interpret the visualization carefully and led to more productive explanations about ideas represented in the dynamic visualization. In contrast, the interaction group was less successful in linking the visualization to underlying concepts and observable phenomena and wrote less detailed explanations. The study suggests that drawing is a promising way to help students interpret complex visualizations and integrate information. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 48: 1177–1198, 2011  相似文献   

2.
Carefully scaffolded dynamic visualizations have potential to promote science learning for all students, including English language learners (ELLs) who are often underserved in mainstream science classrooms, but little is known about how to design effective scaffolding to support such diverse students' learning with dynamic visualizations. This study investigated how two forms of scaffolding embedded in dynamic visualizations, expert guidance and generating guidance, can foster ELLs' and non-ELLs' understanding of unobservable scientific phenomena. While interacting with dynamic visualizations, students in the expert guidance condition were provided with scientifically accurate explanations to interpret visual representations, whereas students in the generating guidance condition were prompted to generate their own explanations using visual representations. The results show the significant advantage of generating guidance over expert guidance for both ELLs and non-ELLs, although students in the generating guidance condition did not receive feedback on their generated artifacts. Analyses of video data and log data from 40 pairs revealed that each form of scaffolding affected the quantity and quality of linguistically diverse students' conversations. The results show that generating guidance enabled students, particularly ELLs, to engage in discourse-rich practices to evaluate various sources of evidence from the visualization and compare the evidence to their alternative ideas to develop a coherent understanding of the target concepts. This study shows the unique benefits of generating guidance as an effective strategy to support linguistically diverse students' science learning with dynamic visualizations.  相似文献   

3.
Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students’ know about human body and various systems, both drawings and spoken responses provide rich evidence of their understanding of the connections between science drawings and verbal explanations. In this forum contribution, we present several theoretical connections between everyday language and science communication and argue that building communication skills in science are essential. We also discuss how young participants should be valued and supported in research. Finally we discuss the need for multimodal research methods when the research participants are young.  相似文献   

4.
It is considered important for students to participate in scientific practices to develop a deeper understanding of scientific ideas. Supporting students, however, in knowing and understanding the natural world in connection with generating and evaluating scientific evidence and explanations is not easy. In addition, writing in science can help students to understand such connections as they communicate what they know and how they know it. Although tools such as vee-maps can scaffold students?? efforts to design investigations, we know less about how these tools support students in connecting scientific ideas with the evidence they are generating, how these connections develop over time, or how writing can be used to encourage such connections. In this study, we explored students?? developing ability to reason scientifically by examining the relationship between students?? understanding of scientific phenomena and their understanding of how to generate and evaluate evidence for their ideas in writing. Three high school classes completed three investigations. One class used vee-mapping each time, one used vee-mapping once, and one did not use vee-mapping. Students?? maps and written reports were rated for understanding of relevant science procedural and conceptual ideas. Comparisons between groups and over time indicate a positive relationship between improved procedural and conceptual understanding. Findings also indicate that improved procedural understanding preceded improved conceptual understanding, and thus, multiple experiences were needed for students to connect evidence and explanation for science phenomena.  相似文献   

5.
This research investigated the sources of explanations and understanding of natural phenomena in terms of the students’ cultural and school science experiences. The first phase involved interviews with eight village elders that probed their explanations and understanding of natural phenomena. The second phase involved the design, development and administration of two questionnaires on natural phenomena to 179 students in a rural boarding high school in Papua New Guinea (PNG). Most village elders gave explanations of many of the phenomena in terms of spirits, spells, magic, religion, and personal experiences. Most school-aged students choose scientific explanations of natural phenomena in terms of what they had learned in school or from personal experiences. However, many choose explanations of the same phenomena about spirits, spells and magic that came from the village, family or home. The study revealed that students’ ideas about natural phenomena are strongly governed and controlled by their school science knowledge in the school setting. It is likely that their own traditional knowledge cannot be identified in a school setting but that questionnaires in the students’ local language be given to students in their villages (as opposed to school). In addition, so as not to diminish the value of this traditional knowledge, science education programs are needed that are able to consider and harmonise traditional knowledge with school science.  相似文献   

6.
In this work, we examine middle school students?? understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called Global Warming: Virtual Earth. In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw conclusions about how individual variables effect changes in the Earth??s temperature. They also carry out inquiry activities to make connections between scientific processes, the socio-scientific issues, and ideas presented in the media. Results show that participating in the unit increases students?? understanding of the science. We discuss how students integrate their ideas about global climate change as a result of using virtual experiments that allow them to explore meaningful complexities of the climate system.  相似文献   

7.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

8.
ABSTRACT

Instructional explanations have sometimes been described as an ineffective way to teach science, representing a transmissive view of learning. However, science teachers frequently provide instructional explanations, and students also offer them in cooperative learning. Contrary to the transmissive view regarding explanation, studies suggest that instructional explanations might be successful if they are based on an interaction between explainers and explainees, including the diagnosis of understanding and adaptation to the explainee’s needs. The present article has three goals: (1) It will propose a framework for potentially effective instructional explanations, presenting five core ideas of what constitutes effective instructional explanations and two concerning how they should be implemented into science teaching. (2) To justify the framework, the article will review studies on the effectiveness of instructional explanations. It will identify factors that have been researched for their impact on the effectiveness of instructional explanations and discuss them for their applicability to science teaching. (3) This article will connect the research on instructional explanations with the idea of basic dimensions of instructional quality in science. It will discuss the core ideas as particular expressions of the basic dimensions of instructional quality, specifically ‘cognitive activation’ and ‘constructive support’.  相似文献   

9.
This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in genetics instruction; and (3) suggests a modified concept mapping assessment tool for both NOS and GCK. A quasi-experimental control group research design was utilized with pretests, posttests, and delayed posttests, combining qualitative data and quantitative data. The experimental group was taught with historical curricular lessons, while the control group was taught with non-historical curricular lessons. The results indicated that students in the experimental group developed better understanding in targeted aspects of NOS immediately after the intervention and retained their learning 2 months after the intervention. Both groups developed similar genetics knowledge in the posttest, and revealed a slight decay in their understanding in the delayed posttest.  相似文献   

10.
The purposes of this study were, based on John Dewey’s ideas on experience, to examine how primary students used their own everyday experience and were affected by own and others’ experience in science discourse, and to illuminate the implications of experience in science education. To do these, science discourses by a group of six fourth-graders were observed, where they talked about their ideas related to thermal concepts. The data was collected through interviews and open-ended questions, analyzed based on Dewey’s perspective, and depicted as the discourse map which was developed to illustrate students’ transaction and changing process of students’ ideas. The results of the analysis showed typical examples of Dewey’s notions of experience, such as the principles of continuity and of transaction and of different types of experience, examples of ‘the expanded continuity and transaction’, and science discourse as inquiry. It was also found that students’ everyday experiences played several roles: as a rebuttal for changing their own ideas or others’, backing for assurance of their own ideas in individual students’ inner changes after discourse with others, and backing for other’s ideas. Based on these observations, this study argues that everyday experience should be considered as a starting point for primary students’ science learning because most of their experience comes from everyday, not school science, contexts. In addition, to evoke educative experience in science education, it is important for teachers to pay more attention to Dewey’s notions of the principles of continuity and of transaction and to their educational implications.  相似文献   

11.
Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of energy in photosynthesis. Two hundred 7th‐grade students were randomly assigned to either a dynamic or a static condition and completed a web‐based inquiry unit that encourages students to make connections among energy concepts in photosynthesis. While working on the inquiry unit, students in the dynamic condition interacted with a dynamic visualization of energy transformation, whereas students in the static condition interacted with a series of static illustrations of the same concept. The results showed that students in both conditions added new, scientific ideas about energy transformation and developed a more coherent understanding of energy in photosynthesis. However, when comparing the two conditions, we found a significant advantage of dynamic visualization over static illustrations. Students in the dynamic condition were significantly more successful in articulating the process of energy transformation in the context of chemical reactions during photosynthesis. Students in the dynamic condition also demonstrated a more integrated understanding of energy in photosynthesis by linking their ideas about energy transformation to other energy ideas and observable phenomena of photosynthesis than those students in the static condition. This study, consistent with other research, shows that dynamic visualizations can more effectively improve students' understanding of abstract concepts of molecular processes than static illustrations. The results of this study also suggest that with appropriate instructional support, such as making predictions and distinguishing among ideas, both dynamic visualizations and static illustrations can benefit students. This study underscores the importance of curriculum design in ensuring that dynamic visualizations add value to science instructional materials. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 218–243, 2012  相似文献   

12.
The purpose of the project was to investigate students' incidental word learning in science classes that depended on discussion and hands-on activities. In separate studies, 4th- and 8th-grade students were given pretests and posttests that assessed depth of knowledge of topical words used in a single unit. In both studies, students made significant improvement in their knowledge of topical words; knowledge of nontopical words did not improve. Students who started the unit with partial knowledge of topical words were likely to learn meanings appropriate for the unit. Depth of topical word knowledge also contributed significantly to improvement on a test of applied problems. While significant incidental word learning occurred over the science units, students with little or no understanding of topical words at the outset tended to make limited progress in both word learning and learning the ideas and information of the unit. The educational implications are potentially serious and need to be explored in further studies. Copyright 2000 Academic Press.  相似文献   

13.
Issues regarding scientific explanation have been of interest to philosophers from Pre-Socratic times. The notion of scientific explanation is of interest not only to philosophers, but also to science educators as is clearly evident in the emphasis given to K-12 students' construction of explanations in current national science education reform efforts. Nonetheless, there is a dearth of research on conceptualizing explanation in science education. Using a philosophically guided framework—the Nature of Scientific Explanation (NOSE) framework—the study aims to elucidate and compare college freshmen science students', secondary science teachers', and practicing scientists' scientific explanations and their views of scientific explanations. In particular, this study aims to: (1) analyze students', teachers', and scientists' scientific explanations; (2) explore the nuances about how freshman students, science teachers, and practicing scientists construct explanations; and (3) elucidate the criteria that participants use in analyzing scientific explanations. In two separate interviews, participants first constructed explanations of everyday scientific phenomena and then provided feedback on the explanations constructed by other participants. Major findings showed that, when analyzed using NOSE framework, participant scientists did significantly “better” than teachers and students. Our analysis revealed that scientists, teachers, and students share a lot of similarities in how they construct their explanations in science. However, they differ in some key dimensions. The present study highlighted the need articulated by many researchers in science education to understand additional aspects specific to scientific explanation. The present findings provide an initial analytical framework for examining students' and science teachers' scientific explanations.  相似文献   

14.
In this paper, we explore dynamic modeling as an opportunity for students to think about the science content they are learning. We examined the Cognitive Strategies for Modeling (CSMs) in which students engaged as they created dynamic models. We audio- and videotape-recorded eight pairs of ninth grade science students and analyzed their conversations and actions. In analyzing appropriate objects and factors for their model, some students merely enumerated potential factors whereas others engaged in rich, substantial, mindful analysis. In reasoning about their models, students discussed relationships in depth, concentrated only on the most important key relationships, or encountered difficulty distinguishing between causal and correlational relationships. In synthesizing working models, students mapped their model to aid visualization, focused on their goal, or talked about their model's appearance or form. Students attempted to articulate explanations for their relationships, but sometimes their explanations were shallow. In testing their models, some students tested thoroughly but only a few persisted in debugging their model's behavior so that it matched their expectations. In our conclusion we suggest that creating dynamic models has great potential for use in classrooms to engage students in thought about science content, particularly in those thinking strategies best fostered by dynamic modeling: analysis, relational reasoning, synthesis, testing and debugging, and making explanations.  相似文献   

15.
The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students’ conceptual understanding of thermal concepts in everyday contexts across several school years and to analyse the variables—school year, science subjects currently being studied, and science subjects previously studied in thermal energy—that influence students’ thermal conceptual understanding. The TCE, which was administered to 515 Korean students from years 10–12, was developed in Australia, using students’ alternative conceptions derived from the research literature. The conceptual structure comprised four groups—heat transfer and temperature changes, boiling, heat conductivity and equilibrium, and freezing and melting—using 19 of the 26 items in the original questionnaire. Depending on the year group, 25–55% of students experienced difficulties in applying scientific concepts in everyday contexts. Years of schooling, science subjects currently studied and physics topics previously studied correlated with development of students’ conceptual understanding, especially in topics relating to heat transfer, temperature scales, specific heat capacity, homeostasis, and thermodynamics. Although students did improve their conceptual understandings in later years of schooling, they still had difficulties in relating the scientific concepts to their experiences in everyday contexts. The study illustrates the utility of using a pencil-and-paper questionnaire to identify students’ understanding of thermal concepts in everyday situations and provides a baseline for Korean students’ achievement in terms of physics in everyday contexts, one of the objectives of the Korean national curriculum reforms.  相似文献   

16.
Antibiotic resistance (ABR) is a significant contemporary socio-scientific issue. To engage in informed reasoning about ABR, students need to understand natural selection. A secondary science unit was designed and implemented, combining an issues-based approach and model-based reasoning, to teach students about natural selection and ABR. This sequential explanatory mixed methods study explored students’ explanations of natural selection. Students created model-based explanations (MBEs) about ABR and verbally explained generalised natural selection during semi-structured interviews. Students’ MBEs significantly increased in natural selection content, and misconceptions about natural selection and ABR significantly decreased after the unit. However, students’ explanations of generalised natural selection differed from ABR explanations. Students struggled to include mutation as the cause of initial variation when explaining generalised natural selection, whereas students included mutation when explaining ABR but often did so after selection pressure. Qualitative analysis indicated students correctly explained ABR or correctly explained generalised natural selection, but none correctly explained both. Students who did understand ABR struggled to apply their understanding to a context other than ABR. This study demonstrates contextual differences in students’ natural selection ideas and provides implications for natural selection instruction. While ABR is a compelling issue to contextualise natural selection instruction, it may be problematic.  相似文献   

17.
Niaz  M. 《Science & Education》1998,7(2):107-127
The main objective of this study is to construct a Lakatosian teaching strategy that can facilitate conceptual change in students' understanding of chemical equilibrium. The strategy is based on the premise that cognitive conflicts must have been engendered by the students themselves in trying to cope with different problem solving strategies. Results obtained (based on Venezuelan freshman students) show that the performance of the experimental group of students was generally better (especially on the immediate posttests) than that of the control group. It is concluded that a conceptual change teaching strategy must take into consideration the following aspects: a) core beliefs of the students in the topic (cf. 'hard core', Lakatos 1970); b) exploration of the relationship between core beliefs and student alternative conceptions (misconceptions); c) cognitive complexity of the core belief can be broken down into a series of related and probing questions; d) students resist changes in their core beliefs by postulating 'auxiliary hypotheses' in order to resolve their contradictions; e) students' responses based on their alternative conceptions must be considered not as wrong, but rather as models, perhaps in the same sense as used by scientists to break the complexity of a problem; and f) students' misconceptions be considered as alternative conceptions (theories) that compete with the present scientific theories and at times recapitulate theories scientists held in the past.  相似文献   

18.
Understanding scientific phenomena requires comprehension and application of the underlying causal relationships that describe those phenomena (Carey 2002). The current study examined the roles of self-explanation and meta-level feedback for understanding causal relationships described in a causal diagram. In this study, 63 Korean high-school students were randomly assigned to one of three conditions: instructional explanation, self-explanation, and meta-level feedback. Results showed that self-explaining a causal diagram was as effective as studying instructional explanations. Furthermore, the effectiveness of self-explaining a causal diagram was enhanced by meta-level feedback that prompted students to reflect on their own explanations by comparing them with instructional explanations. We identified three main difficulties that high-school students experienced when explaining a causal diagram to themselves: one-sided explanation, erroneous explanation, and the lack of inference. Implications of the study were discussed in regard to the improvement of self-explanation and the design of causal diagrams in science education.  相似文献   

19.
The study was carried out with 175 Turkish students by using drawings at different ages understanding of gene, DNA and chromosome concepts. Students from 8th, 9th, 11th grades and, science and biology student teachers were simply asked to draw the structure of gene, DNA and chromosome in a cell and also to give explanations about these three concepts. Differences in understanding between the age groups were found to be significant for the concepts of gene and DNA. None of the groups exhibit sound understanding and regardless of the age levels, students in all groups had alternative ideas about the three concepts investigated.  相似文献   

20.
The development of curriculum materials that are also educative for teachers has been proposed as a strategy to support teachers learning to teach inquiry science. In this study, one seventh-grade teacher used five inquiry science units with varying support for teachers over a two-year period. Teacher journals, interviews, and classroom videotape were collected. Analysis focused on engagement in planning and teaching, pedagogical content knowledge, and the match to teacher learning needs. Findings indicate that this teacher’s ideas developed as she interacted with materials and her students. Information about student ideas, task- and idea-specific support, and model teacher language was most helpful. Supports for understanding goals, assessment, and the teacher’s role, particularly during discussions and group work, were most needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号