首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes and illustrates key features of Bayesian approaches to model diagnostics and assessing data–model fit of structural equation models, discussing their merits relative to traditional procedures.  相似文献   

2.
Multilevel Structural equation models are most often estimated from a frequentist framework via maximum likelihood. However, as shown in this article, frequentist results are not always accurate. Alternatively, one can apply a Bayesian approach using Markov chain Monte Carlo estimation methods. This simulation study compared estimation quality using Bayesian and frequentist approaches in the context of a multilevel latent covariate model. Continuous and dichotomous variables were examined because it is not yet known how different types of outcomes—most notably categorical—affect parameter recovery in this modeling context. Within the Bayesian estimation framework, the impact of diffuse, weakly informative, and informative prior distributions were compared. Findings indicated that Bayesian estimation may be used to overcome convergence problems and improve parameter estimate bias. Results highlight the differences in estimation quality between dichotomous and continuous variable models and the importance of prior distribution choice for cluster-level random effects.  相似文献   

3.
In this study, we contrast two competing approaches, not previously compared, that balance the rigor of CFA/SEM with the flexibility to fit realistically complex data. Exploratory SEM (ESEM) is claimed to provide an optimal compromise between EFA and CFA/SEM. Alternatively, a family of three Bayesian SEMs (BSEMs) replace fixed-zero estimates with informative, small-variance priors for different subsets of parameters: cross-loadings (CL), residual covariances (RC), or CLs and RCs (CLRC). In Study 1, using three simulation studies, results showed that (1) BSEM-CL performed more closely to ESEM; (2) BSEM-CLRC did not provide more accurate model estimation compared with BSEM-CL; (3) BSEM-RC provided unstable estimation; and (4) different specifications of targeted values in ESEM and informative priors in BSEM have significant impacts on model estimation. The real data analysis (Study 2) showed that the differences in estimation between different models were largely consistent with those in Study1 but somewhat smaller.  相似文献   

4.
Despite its importance to structural equation modeling, model evaluation remains underdeveloped in the Bayesian SEM framework. Posterior predictive p-values (PPP) and deviance information criteria (DIC) are now available in popular software for Bayesian model evaluation, but they remain underutilized. This is largely due to the lack of recommendations for their use. To address this problem, PPP and DIC were evaluated in a series of Monte Carlo simulation studies. The results show that both PPP and DIC are influenced by severity of model misspecification, sample size, model size, and choice of prior. The cutoffs PPP < 0.10 and ?DIC > 7 work best in the conditions and models tested here to maintain low false detection rates and misspecified model selection rates, respectively. The recommendations provided in this study will help researchers evaluate their models in a Bayesian SEM analysis and set the stage for future development and evaluation of Bayesian SEM fit indices.  相似文献   

5.
To infer longitudinal relationships among latent factors, traditional analyses assume that the measurement model is invariant across measurement occasions. Alternative to placing cross-occasion equality constraints on parameters, approximate measurement invariance (MI) can be analyzed by specifying informative priors on parameter differences between occasions. This study evaluated the estimation of structural coefficients in multiple-indicator autoregressive cross-lagged models under various conditions of approximate MI using Bayesian structural equation modeling. Design factors included factor structures, conditions of non-invariance, sizes of structural coefficients, and sample sizes. Models were analyzed using two sets of small-variance priors on select model parameters. Results showed that autoregressive coefficient estimates were more accurate for the mixed pattern than the decreasing pattern of non-invariance. When a model included cross-loadings, an interaction was found between the cross-lagged estimates and the non-invariance conditions. Implications of findings and future research directions are discussed.  相似文献   

6.
Appropriate model specification is fundamental to unbiased parameter estimates and accurate model interpretations in structural equation modeling. Thus detecting potential model misspecification has drawn the attention of many researchers. This simulation study evaluates the efficacy of the Bayesian approach (the posterior predictive checking, or PPC procedure) under multilevel bifactor model misspecification (i.e., ignoring a specific factor at the within level). The impact of model misspecification on structural coefficients was also examined in terms of bias and power. Results showed that the PPC procedure performed better in detecting multilevel bifactor model misspecification, when the misspecification became more severe and sample size was larger. Structural coefficients were increasingly negatively biased at the within level, as model misspecification became more severe. Model misspecification at the within level affected the between-level structural coefficient estimates more when data dependency was lower and the number of clusters was smaller. Implications for researchers are discussed.  相似文献   

7.
As useful multivariate techniques, structural equation models have attracted significant attention from various fields. Most existing statistical methods and software for analyzing structural equation models have been developed based on the assumption that the response variables are normally distributed. Several recently developed methods can partially address violations of this assumption, but still encounter difficulties in analyzing highly nonnormal data. Moreover, the presence of missing data is a practical issue in substantive research. Simply ignoring missing data or improperly treating nonignorable missingness as ignorable could seriously distort statistical influence results. The main objective of this article is to develop a Bayesian approach for analyzing transformation structural equation models with highly nonnormal and missing data. Different types of missingness are discussed and selected via the deviance information criterion. The empirical performance of our method is examined via simulation studies. Application to a study concerning people’s job satisfaction, home life, and work attitude is presented.  相似文献   

8.
9.
Research in regularization, as applied to structural equation modeling (SEM), remains in its infancy. Specifically, very little work has compared regularization approaches across both frequentist and Bayesian estimation. The purpose of this study was to address just that, demonstrating both similarity and distinction across estimation frameworks, while specifically highlighting more recent developments in Bayesian regularization. This is accomplished through the use of two empirical examples that demonstrate both ridge and lasso approaches across both frequentist and Bayesian estimation, along with detail regarding software implementation. We conclude with a discussion of future research, advocating for increased evaluation and synthesis across both Bayesian and frequentist frameworks.  相似文献   

10.
In many applications of multilevel modeling, group-level (L2) variables for assessing group-level effects are generated by aggregating variables from a lower level (L1). However, the observed group mean might not be a reliable measure of the unobserved true group mean. In this article, we propose a Bayesian approach for estimating a multilevel latent contextual model that corrects for measurement error and sampling error (i.e., sampling only a small number of L1 units from a L2 unit) when estimating group-level effects of aggregated L1 variables. Two simulation studies were conducted to compare the Bayesian approach with the maximum likelihood approach implemented in Mplus. The Bayesian approach showed fewer estimation problems (e.g., inadmissible solutions) and more accurate estimates of the group-level effect than the maximum likelihood approach under problematic conditions (i.e., small number of groups, predictor variable with a small intraclass correlation). An application from educational psychology is used to illustrate the different estimation approaches.  相似文献   

11.
In order to analyze intensive longitudinal data collected across multiple individuals, researchers frequently have to decide between aggregating all individuals or analyzing each individual separately. This paper presents an R package, gimme, which allows for the automatic specification of individual-level structural equation models that combine group-, subgroup-, and individual-level information. This R package is a complement of the GIMME program currently available via a combination of MATLAB and LISREL. By capitalizing on the flexibility of R and the capabilities of the existing structural equation modeling package lavaan, gimme allows for the automated specification and estimation of group-, subgroup-, and individual-level relations in time series data from within a structural equation modeling framework. Applications include daily diary data as well as functional magnetic resonance imaging data.  相似文献   

12.
Two models can be nonequivalent, but fit very similarly across a wide range of data sets. These near-equivalent models, like equivalent models, should be considered rival explanations for results of a study if they represent plausible explanations for the phenomenon of interest. Prior to conducting a study, researchers should evaluate plausible models that are alternatives to those hypothesized to evaluate whether they are near-equivalent or equivalent and, in so doing, address the adequacy of the study’s methodology. To assess the extent to which alternative models for a study are empirically distinguishable, we propose 5 indexes that quantify the degree of similarity in fit between 2 models across a specified universe of data sets. These indexes compare either the maximum likelihood fit function values or the residual covariance matrices of models. Illustrations are provided to support interpretations of these similarity indexes.  相似文献   

13.
In this article, we propose a nonlinear dynamic latent class structural equation modeling (NDLC-SEM). It can be used to examine intra-individual processes of observed or latent variables. These processes are decomposed into parts which include individual- and time-specific components. Unobserved heterogeneity of the intra-individual processes are modeled via a latent Markov process that can be predicted by individual- and time-specific variables as random effects. We discuss examples of sub-models which are special cases of the more general NDLC-SEM framework. Furthermore, we provide empirical examples and illustrate how to estimate this model in a Bayesian framework. Finally, we discuss essential properties of the proposed framework, give recommendations for applications, and highlight some general problems in the estimation of parameters in comprehensive frameworks for intensive longitudinal data.  相似文献   

14.
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects modeling (LMM) such as cross-sectional multilevel modeling and latent growth modeling. It is well known that LMM can be formulated as structural equation models. However, one main difference between the implementations in SEM and LMM is that maximum likelihood (ML) estimation is usually used in SEM, whereas restricted (or residual) maximum likelihood (REML) estimation is the default method in most LMM packages. This article shows how REML estimation can be implemented in SEM. Two empirical examples on latent growth model and meta-analysis are used to illustrate the procedures implemented in OpenMx. Issues related to implementing REML in SEM are discussed.  相似文献   

15.
Multivariate meta-analysis has become increasingly popular in the educational, social, and medical sciences. It is because the outcome measures in a meta-analysis can involve more than one effect size. This article proposes 2 mathematically equivalent models to implement multivariate meta-analysis in structural equation modeling (SEM). Specifically, this article shows how multivariate fixed-, random- and mixed-effects meta-analyses can be formulated as structural equation models. metaSEM (a free R package based on OpenMx) and Mplus are used to implement the proposed procedures. A real data set is used to illustrate the procedures. Formulating multivariate meta-analysis as structural equation models provides many new research opportunities for methodological development in both meta-analysis and SEM. Issues related to and extensions on the SEM-based meta-analysis are discussed.  相似文献   

16.
Multivariate heterogenous data with latent variables are common in many fields such as biological, medical, behavioral, and social-psychological sciences. Mixture structural equation models are multivariate techniques used to examine heterogeneous interrelationships among latent variables. In the analysis of mixture models, determination of the number of mixture components is always an important and challenging issue. This article aims to develop a full Bayesian approach with the use of reversible jump Markov chain Monte Carlo method to analyze mixture structural equation models with an unknown number of components. The proposed procedure can simultaneously and efficiently select the number of mixture components and conduct parameter estimation. Simulation studies show the satisfactory empirical performance of the method. The proposed method is applied to study risk factors of osteoporotic fractures in older people.  相似文献   

17.
Fitting a large structural equation modeling (SEM) model with moderate to small sample sizes results in an inflated Type I error rate for the likelihood ratio test statistic under the chi-square reference distribution, known as the model size effect. In this article, we show that the number of observed variables (p) and the number of free parameters (q) have unique effects on the Type I error rate of the likelihood ratio test statistic. In addition, the effects of p and q cannot be fully explained using degrees of freedom (df). We also evaluated the performance of 4 correctional methods for the model size effect, including Bartlett’s (1950), Swain’s (1975), and Yuan’s (2005) corrected statistics, and Yuan, Tian, and Yanagihara’s (2015) empirically corrected statistic. We found that Yuan et al.’s (2015) empirically corrected statistic generally yields the best performance in controlling the Type I error rate when fitting large SEM models.  相似文献   

18.
In structural equation models, outliers could result in inaccurate parameter estimates and misleading fit statistics when using traditional methods. To robustly estimate structural equation models, iteratively reweighted least squares (IRLS; Yuan & Bentler, 2000) has been proposed, but not thoroughly examined. We explore the large-sample properties of IRLS and its effect on parameter recovery, model fit, and aberrant data identification. A parametric bootstrap technique is proposed to determine the tuning parameters of IRLS, which results in improved Type I error rates in aberrant data identification, for data sets generated from homogenous populations. Scenarios concerning (a) simulated data, (b) contaminated data, and (c) a real data set are studied. Results indicate good parameter recovery, model fit, and aberrant data identification when noisy observations are drawn from a real data set, but lackluster parameter recovery and identification of aberrant data when the noise is parametrically structured. Practical implications and further research are discussed.  相似文献   

19.
This article introduces and demonstrates the application of an R statistical programming environment code for conducting structural equation modeling (SEM) specification searches. The implementation and flexibility of the provided code is demonstrated using the Tabu search procedure, although the underlying code can also be directly modified to implement other search procedures like Ant Colony Optimization, Genetic Algorithms, Ruin-and-Recreate, or Simulated Annealing. The application is illustrated using data with a known common factor structure. The results demonstrate the capabilities of the program for conducting specification searches in SEM. The programming codes are provided as open-source R functions.  相似文献   

20.
Structural equation modeling (SEM) is a versatile statistical modeling tool. Its estimation techniques, modeling capacities, and breadth of applications are expanding rapidly. This module introduces some common terminologies. General steps of SEM are discussed along with important considerations in each step. Simple examples are provided to illustrate some of the ideas for beginners. In addition, several popular specialized SEM software programs are briefly discussed with regard to their features and availability. The intent of this module is to focus on foundational issues to inform readers of the potentials as well as the limitations of SEM. Interested readers are encouraged to consult additional references for advanced model types and more application examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号