共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth mixture models combine latent growth curve models and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. Analyses based on these models are becoming quite common in social and behavioral science research because of recent advances in computing, the availability of specialized statistical programs, and the ease of programming. In this article, we show how mixture models can be fit to examine the presence of multiple latent classes by algorithmically grouping or clustering individuals who follow the same estimated growth trajectory based on an evaluation of individual case residuals. The approach is illustrated using empirical longitudinal data along with an easy to use computerized implementation. 相似文献
2.
Wynne W. Chin 《Structural equation modeling》2013,20(2):196-201
STATISTICA 5.0. StatSoft, 2325 East 13th Street, Tulsa, OK 74104, (918) 583–4149. $995 retail, academic site license—$2,000 for 10 copies. Requirements: 386 or better, 4 Meg RAM, Microsoft Windows 3.1 or 95. 相似文献
3.
In this simulation study, we explored the effect of introducing covariates to a growth mixture model when covariates were also generated by a mixture model. We varied the association between the latent classes underlying the growth trajectories and the covariates, the degree of separation between the latent classes underlying the covariates, the number of covariates included, and amount of missing data in the growth data. We found that adding covariates to the growth mixture model generally hurt class recovery except where the latent classes underlying the growth trajectories and the covariates were the same or very strongly associated, and there was a large degree of separation between the classes underlying the covariates. We found that when covariates were introduced, entropy might no longer be an accurate indicator of the distinctiveness of the growth trajectory classes. 相似文献
4.
Janice Kooken D. Betsy McCoach Sandra M. Chafouleas 《Journal of Experimental Education》2019,87(2):214-237
Current practices for growth mixture modeling emphasize the importance of the proper parameterization and number of classes, but the impact of these decisions on latent class composition and the substantive implications has not been thoroughly addressed. Using measures of behavior from 575 middle school students, we compared the results of several multilevel growth mixture models. Results indicated a dramatic shift in class assignment as the models allowed class-varying parameters, with different substantive interpretations and resulting typologies. This research suggests that using variability as a criterion for class differences in a behavior typology can dramatically impact latent class membership. This study describes decisions and results from testing for noninvariance, with particular emphasis on how decisions about the nature of within-person variance can affect resulting subgroups and model parameters. 相似文献
5.
The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) × 3 (exogenous latent mean difference) × 3 (endogenous latent mean difference) × 3 (correlation between factors) × 3 (mixture proportions) factorial design. In addition, the efficacy of several likelihood-based statistics (Akaike's Information Criterion [AIC], Bayesian Information Ctriterion [BIC], the sample-size adjusted BIC [ssBIC], the consistent AIC [CAIC], the Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test [aVLMR]), classification-based statistics (CLC [classification likelihood information criterion], ICL-BIC [integrated classification likelihood], normalized entropy criterion [NEC], entropy), and distributional statistics (multivariate skew and kurtosis test) were examined to determine which statistics best recover the correct number of components. Results indicate that the structural parameters were recovered, but the model fit statistics were not exceedingly accurate. The ssBIC statistic was the most accurate statistic, and the CLC, ICL-BIC, and aVLMR showed limited utility. However, none of these statistics were accurate for small samples (n = 500). 相似文献
6.
This article investigates three types of stage-sequential growth mixture models in the structural equation modeling framework for the analysis of multiple-phase longitudinal data. These models can be important tools for situations in which a single-phase growth mixture model produces distorted results and can allow researchers to better understand population heterogeneity and growth over multiple phases. Through theoretical and empirical comparisons of the models, the authors discuss strategies with respect to model selection and interpreting outcomes. The unique attributes of each approach are illustrated using ecological momentary assessment data from a tobacco cessation study. Transitional discrepancy between phases as well as growth factors are examined to see whether they can give us useful information related to a distal outcome, abstinence at 6 months postquit. It is argued that these statistical models are powerful and flexible tools for the analysis of complex and detailed longitudinal data. 相似文献
7.
Researchers use latent class growth (LCG) analysis to detect meaningful subpopulations that display different growth curves. However, especially when the number of classes required to obtain a good fit is large, interpretation of the encountered class-specific curves might not be straightforward. To overcome this problem, we propose an alternative way of performing LCG analysis, which we call LCG tree (LCGT) modeling. For this purpose, a recursive partitioning procedure similar to divisive hierarchical cluster analysis is used: Classes are split until a certain criterion indicates that the fit does not improve. The advantage of the LCGT approach compared to the standard LCG approach is that it gives a clear insight into how the latent classes are formed and how solutions with different numbers of classes relate. The practical use of the approach is illustrated using applications on drug use during adolescence and mood regulation during the day. 相似文献
8.
Ji Hoon Ryoo Timothy R. Konold Jeffrey D. Long Victoria J. Molfese Xin Zhou 《Structural equation modeling》2017,24(6):897-910
Applications of growth mixture modeling have become widespread in the fields of medicine, public health, and the social sciences for modeling linear and nonlinear patterns of change in longitudinal data with presumed heterogeneity with respect to latent group membership. However, in contrast to linear approaches, there has been relatively less focus on methods for modeling nonlinear change. We introduce a nonlinear mixture modeling approach for estimating change trajectories that rely on the use of fractional polynomials within a growth mixture modeling framework. Fractional polynomials allow for more parsimonious and flexible models in comparison to conventional polynomial models. The procedures are illustrated through the use of math ability scores obtained from 499 children over a period of 3 years, with 4 measurement occasions. Techniques for identifying the best empirically derived growth mixture model solution are also described and illustrated by way of substantive example and a simulation. 相似文献
9.
Su-Young Kim 《Structural equation modeling》2013,20(3):457-476
Just as growth mixture models are useful with single-phase longitudinal data, multiphase growth mixture models can be used with multiple-phase longitudinal data. One of the practically important issues in single- and multiphase growth mixture models is the sample size requirements for accurate estimation. In a Monte Carlo simulation study, the sample sizes required for using these models are investigated under various theoretical and realistic conditions. In particular, the relationship between the sample size requirement and the number of indicator variables is examined, because the number of indicators can be relatively easily controlled by researchers in many multiphase data collection settings such as ecological momentary assessment. The findings not only provide tangible information about required sample sizes under various conditions to help researchers, but they also increase understanding of sample size requirements in single- and multiphase growth mixture models. 相似文献
10.
Janette E. Herbers J. J. Cutuli Joanna N. Keane Jake A. Leonard 《Psychology in the schools》2020,57(12):1830-1844
School districts and other service providers are increasingly aware of the substantial mental health needs of students experiencing family homelessness. Past findings are mixed regarding whether homelessness conveys unique risk beyond the risks associated with extreme poverty. With prospective longitudinal data on homelessness experiences across childhood, we utilized latent profile analysis as a person-centered approach to conceptualizing mental health outcomes in adolescence for 3,778 youth. We considered literal family homelessness as well as families living doubled-up, and we employed propensity score matching to identify a comparison group of nonhomeless students balanced across a range of covariates to address systematic bias. Results indicated that students who experienced literal homelessness during childhood were significantly less likely to demonstrate profiles of resilience in mental health functioning. We considered our approach and findings in light of challenges and opportunities particularly relevant to the school context. 相似文献
11.
Alexandre J. S. Morin Christophe Maïano Benjamin Nagengast Herbert W. Marsh Julien Morizot Michel Janosz 《Structural equation modeling》2013,20(4):613-648
Substantively, this study investigates potential heterogeneity in the developmental trajectories of anxiety in adolescence. Methodologically, this study demonstrates the usefulness of general growth mixture analysis (GGMA) in addressing these issues and illustrates the impact of untested invariance assumptions on substantive interpretations. This study relied on data from the Montreal Adolescent Depression Development Project (MADDP), a 4-year follow-up of more than 1,000 adolescents who completed the Beck Anxiety Inventory each year. GGMA models relying on different invariance assumptions were empirically compared. Each of these models converged on a 5-class solution, but yielded different substantive results. The model with class-varying variance–covariance matrices was retained as providing a better fit to the data. These results showed that although elevated levels of anxiety might fluctuate over time, they clearly do not represent a transient phenomenon. This model was then validated in relation to multiple predictors (mostly related to school violence) and outcomes (grade-point average, school dropout, depression, loneliness, and drug-related problems). 相似文献
12.
Su-Young Kim 《Structural equation modeling》2013,20(2):263-279
Stage-sequential (or multiphase) growth mixture models are useful for delineating potentially different growth processes across multiple phases over time and for determining whether latent subgroups exist within a population. These models are increasingly important as social behavioral scientists are interested in better understanding change processes across distinctively different phases, such as before and after an intervention. One of the less understood issues related to the use of growth mixture models is how to decide on the optimal number of latent classes. The performance of several traditionally used information criteria for determining the number of classes is examined through a Monte Carlo simulation study in single- and multiphase growth mixture models. For thorough examination, the simulation was carried out in 2 perspectives: the models and the factors. The simulation in terms of the models was carried out to see the overall performance of the information criteria within and across the models, whereas the simulation in terms of the factors was carried out to see the effect of each simulation factor on the performance of the information criteria holding the other factors constant. The findings not only support that sample size adjusted Bayesian Information Criterion would be a good choice under more realistic conditions, such as low class separation, smaller sample size, or missing data, but also increase understanding of the performance of information criteria in single- and multiphase growth mixture models. 相似文献
13.
Herbert W. Marsh Bengt Muthén Tihomir Asparouhov Oliver Lüdtke Alexander Robitzsch Alexandre J. S. Morin 《Structural equation modeling》2013,20(3):439-476
This study is a methodological-substantive synergy, demonstrating the power and flexibility of exploratory structural equation modeling (ESEM) methods that integrate confirmatory and exploratory factor analyses (CFA and EFA), as applied to substantively important questions based on multidimentional students' evaluations of university teaching (SETs). For these data, there is a well established ESEM structure but typical CFA models do not fit the data and substantially inflate correlations among the nine SET factors (median rs = .34 for ESEM, .72 for CFA) in a way that undermines discriminant validity and usefulness as diagnostic feedback. A 13-model taxonomy of ESEM measurement invariance is proposed, showing complete invariance (factor loadings, factor correlations, item uniquenesses, item intercepts, latent means) over multiple groups based on the SETs collected in the first and second halves of a 13-year period. Fully latent ESEM growth models that unconfounded measurement error from communality showed almost no linear or quadratic effects over this 13-year period. Latent multiple indicators multiple causes models showed that relations with background variables (workload/difficulty, class size, prior subject interest, expected grades) were small in size and varied systematically for different ESEM SET factors, supporting their discriminant validity and a construct validity interpretation of the relations. A new approach to higher order ESEM was demonstrated, but was not fully appropriate for these data. Based on ESEM methodology, substantively important questions were addressed that could not be appropriately addressed with a traditional CFA approach. 相似文献
14.
Little research has examined factors influencing statistical power to detect the correct number of latent classes using latent profile analysis (LPA). This simulation study examined power related to interclass distance between latent classes given true number of classes, sample size, and number of indicators. Seven model selection methods were evaluated. None had adequate power to select the correct number of classes with a small (Cohen's d = .2) or medium (d = .5) degree of separation. With a very large degree of separation (d = 1.5), the Lo–Mendell–Rubin test (LMR), adjusted LMR, bootstrap likelihood ratio test, Bayesian Information Criterion (BIC), and sample-size-adjusted BIC were good at selecting the correct number of classes. However, with a large degree of separation (d = .8), power depended on number of indicators and sample size. Akaike's Information Criterion and entropy poorly selected the correct number of classes, regardless of degree of separation, number of indicators, or sample size. 相似文献
15.
Minjung Kim Oi-Man Kwok Myeongsun Yoon Victor Willson Mark H. C. Lai 《Journal of Experimental Education》2016,84(2):307-329
This study investigated the optimal strategy for model specification search under the latent growth modeling (LGM) framework, specifically on searching for the correct polynomial mean or average growth model when there is no a priori hypothesized model in the absence of theory. In this simulation study, the effectiveness of different starting models on the search of the true mean growth model was investigated in terms of the mean and within-subject variance-covariance (V-C) structure model. The results showed that specifying the most complex (i.e., unstructured) within-subject V-C structure with the use of LRT, ΔAIC, and ΔBIC achieved the highest recovery rate (>85%) of the true mean trajectory. Implications of the findings and limitations are discussed. 相似文献
16.
The shared parameter growth mixture model (SPGMM) has been proposed as a method to handle missing not at random (MNAR) data in longitudinal studies. This Monte Carlo simulation study compared the one-step approach with a three-step approach for adding covariates into the SPGMM. The results showed that performances of one-step and three-step approaches did not differ, but the estimate of the coefficient of the covariate was biased in most conditions with MNAR data. However, means, variances, and covariance of the intercept and slope as well as their standard errors were estimated without bias in most conditions, except for some combinations of small class distances and MNAR dropout missingness that was not related to the underlying growth trajectory. Classification accuracy was similar with both one-step and three-step SPGMM. 相似文献
17.
When conducting longitudinal research, the investigation of between-individual differences in patterns of within-individual change can provide important insights. In this article, we use simulation methods to investigate the performance of a model-based exploratory data mining technique—structural equation model trees (SEM trees; Brandmaier, Oertzen, McArdle, & Lindenberger, 2013)—as a tool for detecting population heterogeneity. We use a latent-change score model as a data generation model and manipulate the precision of the information provided by a covariate about the true latent profile as well as other factors, including sample size, under the possible influences of model misspecifications. Simulation results show that, compared with latent growth curve mixture models, SEM trees might be very sensitive to model misspecification in estimating the number of classes. This can be attributed to the lower statistical power in identifying classes, resulting from smaller differences of parameters prescribed by the template model between classes. 相似文献
18.
Sarah Depaoli 《Structural equation modeling》2013,20(2):178-203
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the EM algorithm was compared to a Markov chain Monte Carlo (MCMC) estimator condition using weak priors and a condition using tight priors. Results indicated that the MCMC weak condition produced the highest bias, particularly with a weak Dirichlet prior for the mixture class proportions. Specifically, the weak Dirichlet prior affected parameter estimates under all mixture class separation conditions, even with moderate and large sample sizes. With little knowledge about parameters, ML/EM should be used over MCMC weak. However, MCMC tight produced the lowest bias under all mixture class separation conditions and should be used if tight and accurate priors can be placed on parameters. 相似文献
19.
人本管理是现代企业人力资源管理的新模式,是社会和谐发展,企业成功的决定因素之一.本文从建立企业人力资源管理的认识出发,论述了人本管理对企业人力资源管理的实际意义,从满足员工需要、公平制度的建立、正确批评方法的选择、企业与员工家庭的关系、员工的隐私权、对员工意见的正确认识、授权管理、企业与员工的关系等方面提出了一些具体策略. 相似文献
20.
从历时性视角分析,高铭暄之所以能够成长为人民教育家可以概括为五立:一是立志:志在学法,孜矻求索。二是立功:参与立法,功不可没。三是立言:著书立说,垂宪后世。四是立人:严字当头,培育人才。五是立德:德才兼备,为人师表。 相似文献