首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinically integrated curricula in health science education has been shown to promote the development of problem-solving schema and positively impact knowledge acquisition. Despite its’ purported benefits, this type of curricula can impose a high cognitive load, which may negatively impact novice learners’ knowledge acquisition and problem-solving schema development. Introducing explicit clinical reasoning instruction within pre-professional undergraduate basic science courses may limit factors that increase cognitive load, enhance knowledge acquisition, and foster developing clinical problem-solving skills. This study, conducted over the Fall and Spring semesters of the 2018–2019 school year, sought to evaluate whether the implementation of a clinical reasoning instructional intervention within a clinically integrated pre-professional undergraduate general human anatomy course influenced students’ acquisition of anatomical knowledge and development of clinical problem-solving skills. Results of the study were mixed regarding the acquisition of anatomical knowledge. Both the intervention and comparison groups performed similarly on multiple choice examinations of anatomical knowledge. However, the clinical reasoning intervention positively impacted students’ ability to apply clinical reasoning skills to anatomically based clinical case studies. Results from M\mixed between-within subjects analysis of variance comparing scores on Written Clinical Reasoning Assessments revealed a significant interaction between time and group affiliation, with the groups receiving the interventions outperforming the comparison groups: Fall, P < 0.001; Spring, P < 0.001. The results of this study may imply that explicit clinical reasoning instruction within a clinically integrated undergraduate Human Anatomy course could hold potential for fostering students’ early clinical reasoning skills.  相似文献   

2.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

3.
Basic and superior reasoning skills are woven into the clinical reasoning process just as they are used to solve any problem. As clinical reasoning is the central competence of medical education, development of these reasoning skills should occur throughout the undergraduate medical curriculum. The authors describe here a method of teaching reasoning skills in a clinical context during a human anatomy course. Anat Sci Educ 3:267–271, 2010. © 2010 American Association of Anatomists.  相似文献   

4.
案例教学法是一种以案例为基础的教学方法,其采用情景教学的模式,由教师引领学生讨论与思考。学生是课堂的主体,教师起引导作用。尤其是在临床技能学等实践课程中,案例教学法的运用可以使学生更好地体验操作技巧,更有利于学生对知识的理解与运用。该文通过分析对比在临床医学硕士研究生临床技能教学中的传统教学方式的缺点和案例教学法的优点,并结合临床技能教学注重实践操作的特点,构建新的临床技能教学模式,达到培养优秀临床医学硕士研究生的目的。  相似文献   

5.
Didactic and laboratory anatomical education have seen significant reductions in the medical school curriculum due, in part, to the current shift from basic science to more clinically based teaching in North American medical schools. In order to increase medical student exposure to anatomy, with clinical applicability, a student-run initiative called surgically oriented anatomy prosectors (SOAP) club was created within the extracurricular program at the Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada. SOAP invites surgeons and residents from various surgical specialties to demonstrate, on a cadaver, a surgical procedure of their choosing. During the demonstration, the anatomy, as it relates to the surgical procedure, is discussed. The students then break into smaller groups to examine the relevant anatomy on the cadavers, during which time the discussion is broadened. The group continues the conversation in a social environment with refreshments. SOAP is one of the most popular extracurricular clubs with 65% of first and second year medical students registered as members. The high demand for SOAP, along with the positive participant feedback, may be due to its utilization of the principle of education through recreation, which seeks to provide opportunities for learning seamlessly throughout all facets of life. It also demonstrates the desire, amongst certain medical students, to learn applied anatomy, particularly within a surgical context.  相似文献   

6.
The evolution in undergraduate medical school curricula has significantly impacted anatomy education. This study investigated the perceived role of clinical anatomy and evaluated perceptions of medical students' ability to apply anatomical knowledge in the clinic. The aim of this study was to develop a framework to enhance anatomical educational initiatives. Unlike previous work, multiple stakeholders (clinicians, medical students, and academic anatomists) in anatomy education were evaluated. Participants completed an eleven-point Likert scale survey written by the investigators. Responses from both clinical educators and medical students at Penn State Milton S. Hershey Medical Center and College of Medicine suggest that medical students are perceived as ill-prepared to transfer anatomy to the clinic. Although some areas of patient management differ in relevancy to anatomical education, there are areas of clinical care which were uniformly ranked as relying heavily on anatomical knowledge (imaging and diagnostic studies, physical examination, and arrival at correct diagnosis) by a variety of clinical specialists. Our results suggest a need for advanced anatomy courses to be taught coincidental with medical students' clinical education. Development of these courses would optimally rely on input from both clinicians and academic anatomists, as both cohorts rated clinical anatomy similarly (P ≥ 0.05). Additionally, we hypothesize that preclinical students' application of anatomy would be enhanced if clinical context was derived from areas of clinical care which rely heavily on anatomy, whereas courses designed for advanced medical students will benefit from anatomical context focused on specialty specific aspects of clinical care identified in this study.  相似文献   

7.
Both in mainland China and around the world, regional anatomy stands as one of the most important basic science courses in medical school curricula. As such, dissection of human cadavers and use of prosected specimens remains the most essential teaching method in anatomy education. However, medical educators have raised increasing concerns about an ongoing shortage of cadavers for medical use in mainland China, a problem which may seriously limit the future development of human anatomy education. Based on a survey on cadaver usage in anatomy education in mainland China, this study found that the cadaver resources of most given medical schools in mainland China are associated with their geographic location, academic ranking, and local support for body donation policies. Effective measures to alleviate this shortage of cadavers may include future efforts to promote national‐level body donation legislation, broader acceptance of body donation among Chinese citizens, and an efficient and humane protocol for body donation. Anat Sci Educ 11: 397–402. © 2018 American Association of Anatomists.  相似文献   

8.
Human anatomical specimen museums are commonly used by medical, nursing, and paramedical students. Through dissection and prosection, the specimens housed in these museums allow students to appreciate the complex relationships of organs and structures in more detail than textbooks could provide. However, it may be difficult for students, particularly novices, to identify the various parts of these anatomical structures without additional explanations from a docent or supplemental illustrations. Recently, augmented reality (AR) has been used in many museum exhibits to display virtual objects in videos captured from the real world. This technology can significantly enhance the learning experience. In this study, three AR-based support systems for tours in medical specimen museums were developed, and their usability and effectiveness for learning were examined. The first system was constructed using an AR marker. This system could display virtual label information for specimens by capturing AR markers using a tablet camera. Individual AR markers were required for all specimens, but their presence in and on the prosected specimens could also be obtrusive. The second system was developed to set the specimen image itself as an image marker, as most specimens were displayed in cross section. Visitors could then obtain the label information presented by AR without any markers intruding on the display or anatomical specimens. The third system was comprised of a head-mounted display combined with a natural click interface. The system could provide visitors with an environment for the natural manipulation of virtual objects with future scalability.  相似文献   

9.
Radiological imaging is gaining relevance in the acquisition of competencies in clinical anatomy. The aim of this study was to evaluate the perceptions of medical students on teaching/learning of imaging anatomy as an integrated part of anatomical education. A questionnaire was designed to evaluate the perceptions of second‐year students participating in a clinical anatomy course over three consecutive academic years. A principal component analysis was used to evaluate the dimensionality of the questionnaire. The variables were summarized using frequencies, mean, median, 25th percentile, 75th percentile, minimum, and maximum. The results demonstrated that students felt the teaching of imaging anatomy influenced learning in the clinical anatomy course (mean = 4.5, median = 5.0) and subsequent clinical courses (mean = 4.4, median = 4.0). Regarding the imaging techniques used in the demonstration of anatomical structures, computed tomography (median = 5.0) and magnetic resonance imaging (median = 5.0) were highly rated. Students suggested the use of additional support material (37.6%) and favored a more practical approach. In conclusion, the results of this work highlight the value of imaging anatomy in learning human anatomy. Students' comments pointed out a need to focus teaching/learning programs toward a more practical rather than theoretical approach as well as a need to provide a better fit between sectional anatomy and clinical cases using imaging anatomy. In order to provide an optimal learning environment to students, it also seems important to create improved media material as an additional resource tool. Anat Sci Educ. © 2013 American Association of Anatomists.  相似文献   

10.
Medical students state the need for a clinically oriented anatomy class so to maximize their learning experience. We hypothesize that the first‐year medical students, who take the Surgical Clinical Correlates in Anatomy program, will perform better than their peers in their anatomy course, their surgical clerkships and ultimately choose surgical residencies. We designed and recently implemented this program for first‐year medical students. It consisted of General Surgical Knowledge, Orthopedic Surgery, Plastic Surgery, Urology, Cardiothoracic Surgery, General Surgery, Vascular Surgery, and Ear, Nose, and Throat (ENT) sessions. Each session had defined learning objectives and interactive cadaveric operations performed by faculty members and students. The program was elective and had 25 participants randomly chosen. An evaluative questionnaire was completed before and after the program. Comparative analysis of the questionnaires, first‐year anatomy examination results, clinical surgical rotation scores, and residency match results will be completed. The positive opinions of surgeons increased for all medical students from the pre‐evaluation to the post‐evaluation, and there was a greater increase in positive opinions for our participants. Our participants also had the highest average overall for all combined anatomy examinations. A need exists among medical students to develop a clinically correlated anatomy program that will maximize their learning experience, improve their performance and allow them to make moreinformed career choices. The recent implementation of this Surgical Clinical Correlates in Anatomy program fulfills this need. Anat Sci Educ 2: 265?272, 2009. © 2009 American Association of Anatomists.  相似文献   

11.
Hands-on dissection-based learning of anatomy offers an unique and valued experience for medical students. Too often however, the inexperienced student's focus is to avoid damage to unfamiliar structures instead of understanding spatial relationships between structures. This results in unfortunate surrender of a critical learning experience. Additionally, approaches to dissection and anatomic exposure share little alignment to clinical approaches, making it less powerful in clinical applicability. The goal of this viewpoint commentary is based on the experience of the two authors and aims to demonstrate opportunity to introduce clinical approaches for dissection while incorporating relevant anatomical concepts in medical school curriculum that aligns with authentic healthcare practice. Using the dissections of the superficial face as a relevant and current topic of clinical interest, we point out that applying the currently performed dissection approach (medial-to-lateral) falls short of providing sufficient knowledge and understanding of the layered arrangement of facial structures. The lateral-to-medial approach, as performed in surgical face lifting procedures would offer a better understanding of the layers of the face and especially the superficial musculoaponeurotic system (SMAS) accounting for the difficulties of facial dissections on embalmed cadavers. This commentary could offer a potential change in paradigm for students and course facilitators for how to maximize the knowledge transfer during facial dissections. It potentially opens a door to rethink dissection-based learning of anatomy toward techniques and approaches that are aligned to surgical access pathways and thus considered more clinically relevant.  相似文献   

12.
13.
Anatomical education in the United Kingdom (UK) and Ireland has long been under scrutiny, especially since the reforms triggered in 1993 by the General Medical Council's “Tomorrow's Doctors.” The aim of the current study was to investigate the state of medical student anatomy education in the UK and Ireland in 2019. In all, 39 medical schools completed the survey (100% response rate) and trained 10,093 medical students per year cohort. The teachers comprised 760 individuals, of these 143 were employed on full-time teaching contracts and 103 were employed on education and research contracts. Since a previous survey in 1999, the number of part-time staff has increased by 300%, including a significant increase in the number of anatomy demonstrators. In 2019, anatomy was predominantly taught to medical students in either a system-based or hybrid curriculum. In all, 34 medical schools (87%) used human cadavers to teach anatomy, with a total of 1,363 donors being used per annum. Gross anatomy teaching was integrated with medical imaging in 95% of medical schools, embryology in 81%, living anatomy in 78%, neuroanatomy in 73%, and histology in 68.3%. Throughout their five years of study, medical students are allocated on average 85 h of taught time for gross anatomy, 24 h for neuroanatomy, 24 h for histology, 11 h for living anatomy, and 10 for embryology. In the past 20 years, there has been an average loss of 39 h dedicated to gross anatomy teaching and a reduction in time dedicated to all other anatomy sub-disciplines.  相似文献   

14.
The law of Non-Original Malappropriate Eponymous Nomenclature (NOMEN) states that no phenomenon is named after its discoverer. However, eponymous terms are rife in the anatomical and medical literature. In this viewpoint commentary, the authors discuss the history of anatomical eponyms, explain the additional cognitive load imposed by eponyms that can negatively impact student learning and explore the view that eponyms are “pale, male and stale” in the socially conscious 21st century. The authors probe two of the most common arguments used to keep eponyms in anatomy education: (1) clinicians use them because they are easy, and (2) eponyms remind us of anatomy's history. Educators, clinicians and students need to work together to progress this movement and bring a modern lens to this discussion. Based on the arguments presented in this commentary, the authors propose that eponyms should be removed from anatomy curricula, textbooks and have no place in the anatomy classroom.  相似文献   

15.
Pre‐clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre‐clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra‐ and inter‐departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty‐specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre‐clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. Anat Sci Educ 7: 251–261. © 2013 American Association of Anatomists.  相似文献   

16.
Attrition of anatomy knowledge has been an area of concern in health professions curricula. To ensure safe and effective clinical practice, the study of chiropractic requires a good knowledge of musculoskeletal anatomy. In this study, musculoskeletal limb knowledge retention was investigated among students in the 5-year chiropractic program at Macquarie University, Australia. A test of 20 multiple-choice questions, categorized into low-order (LO) and high-order (HO) cognitive ability according to Bloom’s Taxonomy, was developed. Students enrolled in the program were invited to participate with 257 of the 387 choosing to participate, (response rate ranging 56%–72% per year level). No attrition of knowledge across the years was observed, instead, a significant increase in knowledge, measured by total LO and HO scores (P < 0.0005), throughout the program. There were significant increases in both low and high cognitive scores which were not uniform, with high-order scores increasing significantly in the last two year levels. The increase of knowledge, may be explained, at least partially, by the vertical and horizontal integrated curriculum. Retrieval of knowledge, especially in clinically applied formats, may have led to an enhanced ability to apply anatomy knowledge and account for the increased scores in the high-order knowledge seen in the later clinical years. Evaluating anatomy knowledge retention at different cognitive levels seems to provide a better assessment and is worth considering in future anatomy educational research.  相似文献   

17.
Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science‐dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi‐specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school. Anat Sci Educ 7: 379–388. © 2014 American Association of Anatomists.  相似文献   

18.
The Covid-19 pandemic has challenged medical educators internationally to confront the challenges of adapting their present educational activities to a rapidly evolving digital world. In this article, the authors use anatomy education as proxy to reflect on and remap the past, present, and future of medical education in the face of these disruptions. Inspired by the historical Theatrum Anatomicum (Anatomy 1.0), the authors argue replacing current anatomy dissection laboratory (Anatomy 2.0) with a prototype anatomy studio (Anatomy 3.0). In this studio, anatomists are web-performers who not only collaborate with other foundational science educators to devise meaningful and interactive content but who also partner with actors, directors, web-designers, computer engineers, information technologists, and visual artists to master online interactions and processes in order to optimize students' engagement and learning. This anatomy studio also offers students opportunities to create their own online content and thus reposition themselves digitally, a step into developing a new competency of stage presence within medical education. So restructured, Anatomy 3.0 will prepare students with the skills to navigate an emergent era of tele and digital medicine as well as help to foreshadow forthcoming changes in medical education.  相似文献   

19.
Despite human (HUM) and veterinary (VET) medical institutions sharing the goal of educating future clinicians, there is little collaboration between them regarding curricular and pedagogical practices during the preclinical/basic science training years. This may be, at least in part, due to a lack of understanding of each type of curriculum. This study presents data about curricula, student populations, pedagogical methodologies applied, and anatomy educators' training at both HUM and VET institutions. Preclinical curricula, admissions criteria, and student demographics were analyzed for 21 institutions in the United States having both HUM and VET schools. This dataset was augmented by a questionnaire sent to anatomists internationally, detailing anatomy curricula, pedagogies applied, and anatomy educators' training. Many curricular similarities between both training programs were identified, including anatomy education experiences. However, VET programs were found to include more preclinical coursework than HUM programs. Students who matriculate to VET or HUM schools have similar academic records, including prerequisite coursework and grade point average. Median HUM class size was significantly larger, and the percentage of women enrolled in VET institutions was significantly higher. Training of anatomy educators was identical with one exception: VET educators are far more likely to hold a clinical degree. This study elucidates the substantial similarities between VET and HUM programs, particularly in anatomy education, underscoring the potential for collaboration between both types of programs in areas such as interprofessional education, bioethics, zoonotic disease management, and postgraduate training.  相似文献   

20.
The anatomical sciences have always been regarded as an essential component of medical education. In Canada, the methodology and time dedicated to anatomy teaching are currently unknown. Two surveys were administered to course directors and discipline leaders to gain a comprehensive view of anatomical education in Canadian medical schools. Participants were queried about contact hours (classroom and laboratory), content delivery and assessment methods for gross anatomy, histology, and embryology. Twelve schools responded to both surveys, for an overall response rate of 64%. Overall, Canadian medical students spend 92.8 (± 45.4) hours (mean ± SD) studying gross anatomy, 25.2 (± 21.0) hours for histology, and 7.4 (± 4.3) hours for embryology. Gross anatomy contact hours statistically significantly exceeded those for histology and embryology. Results show that most content is delivered in the first year of medical school, as anatomy is a foundational building block for upper-year courses. Laboratory contact time for gross anatomy was 56.8 (± 30.7) hours, histology was 11.4 (± 16.2) hours, and embryology was 0.25 (± 0.6) hours. Additionally, 42% of programs predominantly used instructor/technician-made prosections, another 33% used a mix of dissection and prosections and 25% have their students complete cadaveric dissections. Teaching is either completely or partially integrated into all Canadian medical curricula. This integration trend in Canada parallels those of other medical schools around the world where programs have begun to decrease contact time in anatomy and increase integration of the anatomical sciences into other courses. Compared to published American data, Canadian schools offer less contact time. The reason for this gap is unknown. Further investigation is required to determine if the amount of anatomical science education within medical school affects students' performance in clerkship, residency and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号