首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> 二次函数y=ax2+bx+c(a≠0)配方后可变为标准形式由此可以很快求出y的最值.初中数学中,有不少的最值问题,常常可以转化为二次函数来求解,下面通过几个例子来介绍几种求解方法.  相似文献   

2.
内容概述二次函数的解析式由条件确定二次函数的解析式需要三个独立的条件,一般有如下三种特定形式:1.一般式y=ax2+bx+c(a≠0)2.顶点式y=a(x-m)2+h(a≠0)3.分解式y=a(x-x1)(x-x2)(a≠0)二次函数的最值对二次函数f(x)=ax2+bx+c(a≠0)若自变量x为任意实数,其最值情况为:当a>0,x=-b/2a,fmin=4ac-b2/4a;当a<0,x=-b/2a,fmax=4ac-b2/4a.若自变量x在范围x1≤x≤x2上取值时,其最值情况为:对a>0,有如下结论:  相似文献   

3.
二次函数y =ax2 +bx +c(a≠ 0 )配方后可变为标准形式y =a(x + b2a) 2 + 4ac-b24a (a≠ 0 ) ,由此可以很快求出y的最值 ,初中数学中 ,有不少的最值问题 ,常常可以转化为二次函数来求解 ,下面通过几个例子来介绍几种求解方法。一、主元代入法例 1. 已知x、y、z均是实数 ,且满足x + 2y -z =6x -y + 2z =3求x2 +y2 +z2 的最小值。 (2 0 0 1年安庆市竞赛题 )解 :原方程组变为 :x + 2y =6 +zx -y =3- 2z,解得 x =4 -zy =z+ 1于是x2 +y2 +z2=(4-z) 2 + (z+ 1) 2 +z2=3z2 - 6z+ 17=3(z - 1) 2 + 14当z=1(此时x =3,y =2 )时 ,x2 +y2 +z2 取到最小值…  相似文献   

4.
二次函数y=ax~2+bx+c(a≠0),当函数值y=0时,ax~2+bx+c=0就是一个一元二次方程.换句话说,一元二次方程的根即是二次函数.y=ax~2十bx+c的函数值为零时相应的自变量的值.因此,我们可以这样求解一元二次方程ax~2+bx+c=0(a≠0):  相似文献   

5.
5 应用二次函数的最值性质解决实际问题。二次函数y=ax2+bx+c(a≠0),当a>0(a<0)且x=-b/2a时,y有最小(大)值4ac-b2/4a.有些实际背景的应用性问题,自变量取值范围受到一定限制时,由二次函数图像的单调性和连续性,最值不外乎在顶点或区间的端点处达到.解这类题,首先要建立二次函数模型,求出函数的解析式及实际问题中的自变量的取值范围,然后由上面给出的性质求得最值.  相似文献   

6.
在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 一、二次函数的最值公式二次函数γ=ax2+bx+c(a、b、c为常数且a≠0)其性质中有①若a>0当x=-b/2a时,  相似文献   

7.
<正>我们知道,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根;反之,一元二次方程ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c=0 (a≠0)的根是二次函数y=ax2+bx+c (a≠0)的图象与x轴交点的横坐标.在求解相关问题时,它们之间的这种关系如果能够灵活地运用,则不仅可以使解题过程大为简化,而且还可以获得巧解.下面举例说明.一、判断二次函数图象与x轴的交点情况  相似文献   

8.
二次函数y =ax2 bx c(a≠0 )的顶点式y =a(x b2a) 2 -Δ4a(Δ=b2 -4ac)较为优越,因为顶点式能够体现出二次函数y =ax2 bx c(a≠0 )图象的特征:( 1 )开口方向(由a确定:a >0 ,开口向上;a<0 ,开口向下) ;( 2 )对称轴方程(x b2a=0 ) ;( 3 )顶点位置,即最高点或最低点的位置(点的横坐标x =-b2a,点的纵坐标y =-Δ4a) .由顶点式也能确定出二次函数y =ax2 bx c(a≠0 )的最值(当a >0时有最小值y =-Δ4a;当a <0时有最大值y =-Δ4a) .如果已知二次函数的对称轴,或顶点位置,或最值,采用顶点式y =a(x h) 2 k确定二次函数的解析式较简捷.( 1 )…  相似文献   

9.
在某个给定的闭区间上二次函数的最值,除了出现在顶点上,还有可能出现在端点上,尤其是二次函数的对称轴是变量时,最值的确定要分类讨论。一求解方法对于二次函数y=ax2+bx+c(a≠0). 1.定义域为R,当a>0时,此函数的最小值为(4a-b2)/4a;当  相似文献   

10.
二次函数的一般形式是:y=ax~2+bx+c(a≠0),经配方,得y=a(x+(b/2a))~2+(4ac-b~2)/4a,设b/2a=m,(4ac-b~2)/4a=k 变式一:y=a(x+m)~2+k(a≠0) 二次函数图象的顶点坐标是(-m,k),对称轴方程是x=-m,即当x=-m时,函数y取得最大值(a>0)或最小值(a<0),“最”值是k。 若抛物线y=ax~2+bx+c(a≠0)与x轴有交点(x_1,0)、(x_2,0)(x_1=x_2时相切),即方  相似文献   

11.
所谓3个二次指的是二次方程ax2+bx+c=0(a≠0)、二次函数f(x)=ax2+bx+c(a≠0)、二次不等式ax2+bx+c>0(或<0)(a≠0)对应于考查二次方程根的分布问题、二次函数性质(单调性、最值等)、二次不等式解或恒成立问题.对于高考而言,3个二次的考查并不陌生,几乎年年考、年年新,浙江卷很少直接考二次函数,纵观全国各个省份的高考卷,也有个别省份直接考二次函数,甚至  相似文献   

12.
为了二次函数都知道:二次函数y=ax2+bx+c(a、b、c为常数,a≠0),当y=0时,则此函数形式化为ax2+bx+c=0(a≠0).即二次函数就化为一元二次方程了。所以一元二次方程实际上就是二次函数的特殊形式。因此,二次函数与x轴的交点问题就可以用一元二次方程根的分布和判定定理来解决。下面我们就用例子来谈谈二次函数与x轴的交点。  相似文献   

13.
本文主要是总结一下现行统编教材中涉及到的最值问题的求法,以及在应用这些方法时要注意的问题。一、一元二次函数的最值 1.y=ax~2 bx c(a≠0,x∈R)当x=-b/2a时,y(最值)=(4ac-b~2)/4a 2.y=ax~2 bx c(a≠O,x∈[α,β])(1)-b/2a∈[α,β]时,y_(max)=max{f(-b/2a),f(α),f(β)}  相似文献   

14.
<正>求解最值问题一般情况下是将目标函数表示为二次函数y=ax2+bx+c(a≠0),利用配方或者公式法求出最值.而对于求解面积和线段和差的最值问题,有时很难将目标函数表示为二次函数,这时可将目标函数转化为一元二次方程,根据方程有实根,通过判别式大于或等于0来解决.下面举例说明,供参考.一、利用相似与勾股定理转化目标函数例1 (2014年苏州中考改编题)如图1,  相似文献   

15.
我们知道,二次函数y=ax2 bx c(a≠0)的图象与二次函数y=ax(2a≠0)的图象是形状相同,只是位置不同,所以它的图象可以通过平移y=ax2的图象得到.事实上,有相当一部分同学在理解图象平移问题时,经常会在平移方向上混淆不清,造成误解.但若根据对称轴方程和最值的正负来确定平移方向,会收到良好的效果.其步骤为:  相似文献   

16.
对于二次函数y=ax~2 bx c(a≠0),可通过配方法将其化为顶点式y=a(x b/2a)~2 4ac-b~2/4a(a≠0),可知:  相似文献   

17.
利用平面直角坐标系可能直观看出二次函数与一元二次方程的紧密联系,一元二次方程ax~2 bx c=0(a≠0)的根就是二次函数y=ax~2 bx c(a≠0)的图象与x轴交点的横坐标,而二次函数的图象与x轴有无公共点又由判别式b~2-4ac来决定。因此,在解决有关函数的问题时,常常要用到一元二次方程的有关知识。下面例举方程知识在二次函数中的应用。 例1 二次函数y=ax~2 bx c(a≠0)在x=-1时有最小值-4,它的图象与x轴交点的横坐标分别为x_1、x_2,且x_1~2 x_2~2=10。求此二次函数的解析式。 解:由题意可知,抛物线的顶点坐标为(-1,-4),故设其解析式为y=a(x十1)~2-4(a≠0)。  相似文献   

18.
学习目标掌握二次函数最值问题.学习目标(一)二次函数y=ax2+bx+c在自变量取任意实数时的最值情况:当a>0时,函数在x=-b/2a处取得最小值4ac-b2/4a;  相似文献   

19.
一、一元二次函数 一元二次函数y=ax^2+bx+c(a≠0)一般式可配方为:y=a(x+b/2a)^2+4ac-b^2/4a,顶点(-b/2a,4ac-b^2/4a),对称轴x=-b/2a  相似文献   

20.
某些电路问题的求解,利用到以下二次函数知识:抛物线y=ax2+bx+c(a≠0),当x+-b/2a时,若a>0,则y最小=4ac-b2/4a;若a<0,则y最大=4ac-b2/4a  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号