首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 689 毫秒
1.
如果两个数α和β满足如下关系:α+β=-b/a,α·β=c/a,那么这两个数α,β是方程ax~2+bx+c=0(a(?)0)的根.我们知道,这便是韦达定理的逆定理.下面举例说明它在解析几何证题中的应用.  相似文献   

2.
如果两个数α、β满足如下关系:α β=-b/a,αβ=c/a,那么这两个数α、β是方程ax^2 bx c=0(a≠0)的根,我们知道,这便是韦达定理的逆定理.下面举例说明它在三角中的应用。  相似文献   

3.
高中《代数》第一册P181例3: 例3 设tgα、tgβ是一元二次方程ax~2+bx+c=0(b≠0)的两个根,求ctg(α+β)的值。解:在ax~2+bx+c=0中,a≠0,由一元二次方程根与系数之关系,得tgα+tgβ=-b/a,tgα·tgβ=c/a。而ctg(α+β)=1/tg(α+β)=(1-tgα·tgβ)/(tgα+tgβ)(*)由题设b≠0。故tgα+tgβ≠0,代入  相似文献   

4.
如果两个数α、β满足如下关系:α β=-b/a,αβ=c/a,那么这两个数α、β是方程ax^2 bx c=O(a≠0)的根.这便是韦达定理的逆定理.下面举例说明它在平面三角中的应用.  相似文献   

5.
我们知道:若x1是方程ax2+bx+c=0(a≠0)的根,则ax12+bx1+c=0,反之若ax12+bx1+c=0(a≠0),则x1是方程ax2+bx+c=0的一个根,活用方程根的定义的正、反两方面知识,进行解题是一种重要的方法,现举例说明·一、正用方程根的定义例1(“祖冲之杯”数学邀请赛题)已知关于x的方程ax2+bx+c=0(a≠0)的两根之和是m,两根平方和是n,求3an2+c3bm的值·解:设方程的二根是α、β,则aα2+bα+c=0,aβ2+bβ+c=0·两式相加,得a(α2+β2)+b(α+β)+2c=0,即an+bm+2c=0,所以2c=-(an+bm),所以3an2+c3bm=-31·例2(河北省初中数学竞赛题)求作一元二次方程,使它的根是方程x…  相似文献   

6.
如果1/a+1/a+1/c=1/a+b+c,则a,b,c三个数中必有两个互为相反数. 分析要证明这一结论,只需证明a,b,c三数中必有两个数之和为0即可.  相似文献   

7.
如果1/a 1/b 1/c=1/(a b c),则a,b,c三个数中必有两个互为相反数.分析要证明这一结论,只需证明a,b,c三数中必有两个数之和为0即可.证明由1/a 1/b 1/c=1/(a b c) (a b c)(bc ac ab)-abc=0 (a b)(a c)(b c)=0 a b=0或b c=0,或a c=0,即a,b,c三个数中必有两个互为相反数.下面介绍这一结论的具体应用.  相似文献   

8.
高中代数新教材上册212页例10,(旧上册 P_(170)例3).设tgα、tgβ是一元二次方程 ax~2 bx c=0(b≠0)的两个根,求 ctg(α β)的值.教材解法:在一元二次方程ax~2 bx c=0中a≠0,由一元二次方程根与系数关系,得,tgα tgβ=-b/a,tgαtgβ=c/a而ctg(α β)=1/tg(α β)=1-tgαtgβ[]tgα tgβ由题设b≠0,故tgα tgβ≠0,代入,得,ctg(α β)=1-c/a/-b/a=a-c/-b=c-a/b.这种解法很普遍,教材这样解,平时教师学生都这样  相似文献   

9.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

10.
如果ax2+bx+c=0(a≠0)的两根x1、x2,那么x1+x2=-b/a,x1·x1=c/a这已为人们所熟知的韦达定理.其逆定理是:如果x1、x2满足x1+x2=-b/a,x1·x2=c/a,那么x1,x2一定是x1十x2=-b/a,x1·x2=c/a,那么x1,x2一定是方程ax2+bx+c=0(a≠0)的两根也成立.有趣的是以此导出一个重要的推论.  相似文献   

11.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

12.
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.)1.若角α和角β的终边关于x轴对称,则α和β的关系是()(A)α+β=2kπ(k∈Z)(B)α-β=2kπ(k∈Z)(C)α+β=kπ(k∈Z)(D)α-β=kπ(k∈Z)2.若a=(1,1),b=(1,-1),c=(-1,2),则c=()(A)-12a+23b(B)12a-23b(C)32a-21b(D)-32a+21b3.在&ABC中,若∠A=60°,边AB的长为2,&ABC的面积为23,则BC边的长为()(A)7(B)7(C)3(D)34.已知边长为1的正三角形ABC中,AB=c,BC=a,CA=b,则a·b+b·c+c·a的值为()(A)-32(B)0(C)32(D)35.化简sin(s2inαα+β)-…  相似文献   

13.
候守一 《数学教学研究》2004,(12):42-42,F003,F004
设椭圆、双曲线的方程分别是b2 x2 +a2 y2 =a2 b2 (a >b>0 ) ,b2 x2 -a2 y2 =a2 b2 (a >0 ,b>0 ) ,且P为其图像上的一点 ,∠PF1F2 =α ,∠PF2 F1=β(0 <α <π ,0 <β<π ,F1、F2 为其焦点 ) ,则它们离心率的三角表达式分别为(1) e椭圆 =sin(α+ β)sinα +sinβ;(2 ) e双曲线 =sin(α + β)|sinα -sinβ|.证明 如图 1,∵e椭圆 =ca =2c2a =|F1F2 ||PF1|+|PF2 |=2Rsin(α+ β)2R(sinα+sinβ) =sin(α+ β)sinα+sinβ,∴e椭圆 =sin(α + β)sinα+sinβ.(2 )如图 2 ,∵e双曲线 =ca =|F1F2 |||PF1|-|PF2 ||=2R…  相似文献   

14.
设方程 ax~2+bx+c=0(a≠0)的两根为 x_1,x_2,那么 x_1+x_2=-(b/a),x_1·x_2=(c/a).这就是一元二次方程根与系数的关系.由根与系数的关系,我们知道:以两个数 x_1,x_2为根的一元二次方程(二次项系数为1)是x~2-(x_1+x_2)x+x_1·x_2=0.根与系数的关系使我们能够由方程来讨论根的性质;反之,则可以由根的性质来确定方程的系数.因而,根与系数的关系的应用相当广泛.我  相似文献   

15.
设一元二次方程ax~2+bx+c=0(a≠0)有二实根x_1,x_2,易知有如下两条性质: 性质1.若a+b+c=0,则x_1=1,x_2=c/a;反之,若x_1=1,x_2=c/a,则a+b+c=0.  相似文献   

16.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

17.
例1已知tanα,tanβ是方程x2+3√3x+4=0的两根,且α,β(-π2,2π),则α+β的值为A.π3B.-23π或3πC.-π3或23πD.-23π错解∵tanα+tanβ=-3√3,tanαtanβ=4,∴tan(α+β)=tanα+tanβ1-tanαtanβ=-13√-43=√3.又α,β(-π2,2π),∴α+β(-π,π).因此,α+β=-2π3或π3.选B.辨析错在忽视了tanα,tanβ是方程x2+3√3x+4=0的两个负根这一隐含条件.正解∵tanα+tanβ=-3√3<0,tanαtanβ=4>0,∴tanα,tanβ为方程x2+3√3x+4=0的两个负根,即tanα<0,tanβ<0.又α,β(-π2,2π),∴α,β(-π2,0),α+β(-π,0).又tan(α+β)=tanα+tanβ1-t…  相似文献   

18.
一元二次方程的根与系数之间存在着下列关系:如果ax~2+bx+c=0(a≠0)的两个根是x_1、x_2,那么x_1+x_2=-b/a,x_1·x_2=c/a.这就是有的参考书所讲的“韦达定理”.  相似文献   

19.
<正>一次方程ax+b=0(a≠0)与二次方程ax2+bx+c=0(a≠0)的根的个数与系数的关系,我们都很清楚.对于大于二次的高次方程根的个数的讨论并没有现成的公式.方程  相似文献   

20.
在一元二次方程ax2+bx+c=0(a≠0)中,设x1,x2是它的两个根,则它的根与系数满足:x1+x2=-ba,x1·x2=ca.这两个表达式看起来简单,巧妙地利用它们,可以解答不少的数学竞赛题.一、求值例1设2x2-2x+k=0,2y2-2y+k=0,且x-y=2,那么k=.(2000年河南省初三数学竞赛题)解:由题意知x,y是方程2t2-2t+k=0的根.由根与系数的关系和已知得x+y=1,xy=k2,x-y=2 ∴k=-32.例2若关于x的方程(x+a)(x+b)=M的两根是α、β,则关于x的方程(x+α)(x+β)=-M的两根的平方和为.(2002年河南省初三数学竞赛试题)解:方程(x+a)(x+b)=M可化为x2+(a+b)x+ab-M=0.由根与系数的关…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号