首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.“光子”与“光电子”光子是指光在空间传播时的每一份能量(即能量是不连续的),光子不带电,是微观领域中一种只含有能量的粒子;而光电子是金属表面受到光照时发射出来的电子,其本质就是电子.  相似文献   

2.
在光电效应现象中,当入射光的频率低于该金属的极限频率时,无论光有多强,照射时间多长,都不能产生光电子,光子理论很容易解释这一特性。可是,如果电子能够将若干光子陆续吸收和积累起来,或者一个电子能同时吸收两个甚至更多个光子,那么即使入射光的频率很低不也可以产生光电子吗?怎么会有极限频率出现呢? 首先分析能量“积累”问题。一个电子,在吸收一个光子以后,能否将这个能量保存下来,直到再吸收一个光子呢?回答是:不可能。先从经典模型来看,把一个电子看作能量可连续改变的粒子。当一个电子吸收一个光子以后,这个电子的能量就显著地高于邻近的电子和原子核,这就是一种非热平衡的状态。按照热力学原理,不平衡的  相似文献   

3.
“光电效应”是光的粒子性的一个重要体现,学习中要澄清一些易混淆的概念,如“光子”、“光电子”、“光子的能量”与“光电子的最大初动能”等,这对理解光电效应的规律具有重要意义.  相似文献   

4.
光是电磁波,同时也是粒子,它具有波粒二象性.在光的波长较短时,其粒子性较为突出.能证实光的粒子性的实验有光电效应、康普顿效应等.爱因斯坦的光子说认为,光是不连续的,而是一份一份的,每一份光叫做一个光子.光子的能量为E=hv(v是光波的频率),  相似文献   

5.
“光电效应”是光的粒子性的一个重要体现,也是光的本性中一个高考热点.因此在学习过程中,要澄清一些易混淆的概念,如“光子”与“光电子”、“光子的能量”与“光电子的最大初动能”等,这对理解光电效应的规律具有重  相似文献   

6.
"光电效应"是光的粒子性的一个重要体现,也是光的本性中一个高考热点.因此在复习过程中,要澄清一些易混淆的概念,如"光子"、"光电子"、"光子的能量"与"光电子的最大初动能"等,这对理解光电效应的规律具有重要意义.  相似文献   

7.
理解光电效应 ,掌握光电效应所遵循的规律 ,一般情况下通过两个线索比较容易完成 ,这两条线索 :其一是光的频率线 ;其二是光的强度线 .一、光的频率线1 判断能否发生光电效应光子的能量hν与光的频率ν相对应 ,能否发生光电效应是看照射金属的光的频率是否大于等于这种金属的极限频率 .如果入射光的频率ν大于等于照射金属的极限频率ν0 ,则就能产生光电效应 .2 求解光电子的最大初动能依据爱因斯坦的“光子说”知道 ,金属中的每一个电子只能吸收入射光中一个光子的能量 ,且无积累过程 .电子能否成为光电子 ,就看电子所吸收的光子的能量…  相似文献   

8.
赵严峰  叶原 《天中学刊》1999,14(5):68-69
γ射线通过物质时,会在一次碰撞中整个地丢失能量.这与带电粒子通过逐次碰撞丢失能量的方式是不同的.在物质中它主要发生3种效应:(1)光电效应.光子把它的全部能量交给孩外束缚电子,使之脱离原子而成为光电子.它主要发生在γ射线能量低、吸收物质原子序数Z高的情况下.(2)康普顿效应.光子被原子中的束缚电子或自由电子所散射,其飞行方向发生偏转,同时电子受到反冲.这是一种非相干散射,主要发生在中能γ射线能量(几个MeV)的范围.(3)电子偶效应.能量大于2mec2的光子在原子核或电子的库仑场中会产生电子一正电子对γ→e…  相似文献   

9.
周平原 《物理教师》2006,27(1):11-12
在“光电效应”一节的教学中,学生对“光电效应中电子如何吸收光子的问题”讨论得很热烈.有学生说:“一个光子的能量可以被金属中的某个电子全部吸收,但一个电子最多只能吸收一个光子的能量,不可能同时吸收两个光子的能量,因此照射光存在一个极限频率.”但有人提出反对意见:“为什么电子就不可能同时吸收两个光子的能量?”还有人提出:“有没有这种可能,就是电子先吸收一个光子,然后再吸收下一个光子,直到有足够的能量而发生光电效应?”  相似文献   

10.
魏洁 《考试》2009,(6):85-85,104
“光电效应”是物理光学的重要理论,是光的粒子性的一个重要体现,也是高考考查频率较高的内容之一,学习中要澄清一些易混淆的概念,如“光子”、“光电子”、“光子的能量”与“光电子的最大初动能”等,这对理解光电效应的规律具有重要意义。  相似文献   

11.
一、光子使原子发生能级跃迁与实物粒子 (如质子、电子等 )使原子发生能级跃迁的区别 .用具有一定能量的光子、实物粒子都能使原子发生跃迁 ,处于基态 (或激发态 )的原子受光子照射或被实物粒子轰击是怎样跃迁的 ?它们又有何区别呢 ?下面分析光子使原子发生能级跃迁的实质 .根据量子观点 ,光子是一份一份的 ,光子的能量 hν也是一份一份的 ,每一份光子 ,每一份光子的能量均不可“分”.用光子 (电磁波 )作用到原子上 ,使原子发生跃迁 ,就必须满足“hν=En- Ek”(光子能量超过原子电离所需能量除外 ) ,只有频率ν=( En- Ek) /h的光子才能使 …  相似文献   

12.
杨中甫 《物理教师》2004,25(10):49-50
1905年,爱因斯坦提出光量子说.根据量子理论,光子具有动量,光子的动量户和光子的能量E之间的关系为p=E/c,c光速.光照到物体表面时,会对物体产生压强,这就是“光压”,光压是光的粒子性的典型表现。  相似文献   

13.
两种效应的区别山东省聊城教育学院刘云松光电效应和康普顿效应都是光子与物质中的电子的相互作用.为什么表现出不同的现象?这主要在于三方面的区别.一、两种效应产生的机制不同光电效应──光子与束缚电子的相互作用.当光照射在金属表面时,能量为hv的光子被金属中...  相似文献   

14.
龚保庆 《物理教师》2007,28(2):30-30
处于基态的氢原子吸收一定的能量后会发生跃迁或电离. 由于氢原子只能处于一系列不连续的定态中,对于光子提供的能量,氢原子只能吸收那些能量恰好等于氢原子某两个定态的能量差的光子.如果某个光子的能量不能使电子恰好跃迁到某个离核较远的轨道上,则氢原子将不吸收这个光子.但当光子的能量大于或等于13.6eV时,也可以被氢原子吸收,使氢原子电离.若氢原子吸收的能量大于13.6eV时,氢原子电离后,电子还具有一定的初动能.  相似文献   

15.
近年来的一种新型光电子光谱仪被用来分析钠的多光子电离的光电子能量和空间分布.本文基于光电子成像光谱仪的基本原理,分析电子发射的动力学过程.以钠原子为例,利用共振多光子电离的方法研究并分析了电子初始角分布以及投影到探测器上的图像.结果表明,不同的初始条件(静电场能量和电子发射的初始动能之比),影响所获得的角分布以及探测图样.  相似文献   

16.
一般来说,粒子可能具有的能量的分布是不连续的,因此粒子可能处于的能级的分布也是分立的。当粒子所具有的能量发生变化时,不论从高能级向低能级,还是由低能级向高能级跃迁时,必须伴随着该粒子与外界能量的交换。本文论述粒子能量与外界光能之间的转换或交换过程。 对于物质中处于较低能级的粒子而言,可以吸收特定频率的光子的能量而跃迁到较高的能级,这种过程,称为粒子对入射光场的受激吸收过程。通常我们称为吸收过程。对于物质中处于较高的能级粒子而言,它可以通过两种方式向外界发射出特定频率的光子。其中一种不依赖于外界光场的方式,自发地辐射出一个特定频率的光子而跃迁到较低能级(即ν=  相似文献   

17.
李恒林 《物理教师》2009,30(10):11-12
新课程人教版物理选修3—5课本中讲到“光的粒子性”时,先较为详细地讲了光电效应,接着介绍了光的粒子性又一有力证明——康普顿效应.教科书在阐述康普顿效应时,采用的是经典的弹性球碰撞模型,简单、明了并可方便地求得与实验事实相符合的散射规律.但是,由于只根据系统的初态和终态而未考虑光子与电子作用时的细节,所以在解释康普顿效应时,容易造成概念上的误解.  相似文献   

18.
张长吉 《物理教师》2001,22(4):20-20
在光电效应中,对极限频率是这样解释的:当一个光子的能量小于金属的逸出功时,电子就不能逸出.于是人们就很自然地会想到,为什么电子不能吸收一个光子的能量,积累起来,然后再吸收一个或多个光子直至达到金属的逸出功而发生光电效应呢?  相似文献   

19.
一、问题提出 光电效应是光子说的实验基础,是证明光具有粒子性的一个重要实验.有关光电效应规律的应用也是高考常见的内容.所以我们必须重视光电效应这部分知识的教学.在光电效应中,入射光的强度是一个重要的物理概念.入射光的强度究竟指的什么?教材中有这样一句话:“如果入射光比较强,那就是单位时间内入射光子的数目多,因此产生的光电子也就多.”  相似文献   

20.
卞志荣 《物理教师》2002,23(8):47-47
1 区别原子跃迁和原子核跃迁 .原子是有不同能级的 ,从高能级向低能级跃迁产生原子光谱 ,即产生红外线、可见光、紫外线和伦琴射线 .但由于原子能级间隔只有几电子伏到几千电子伏 ,而原子核的能级间隔为兆电子伏的数量级 ,比原子的能级间隔大得多 ,所以原子核跃迁时发出的γ射线能量比伦琴射线大得多 ,波长比伦琴射线短得多 .2 对氢原子跃迁时吸收能量的认识 .氢原子与光子和实物粒子的作用是不同 .对于能量小于氢原子电离能 (1 3 .6eV)的光子 ,只有其能量刚好使氢原子向高能级跃迁的光子才能被基态氢原子吸收 ,否则不能吸收 ;对于能量…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号