首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
The complexity of the material being taught in clinical neuroscience within the medical school curriculum requires creative pedagogies to teach medical students effectively. Many clinical teaching strategies have been developed and are well described to address these challenges. However, only a few have been evaluated to determine their impact on the performance of students studying clinical neuroscience. Interactive, 2‐hour, self‐directed small‐group interactive clinical case‐based learning sessions were conducted weekly for 4 weeks to integrate concepts learned in the corresponding didactic lectures. Students in the small groups analyzed cases of patients suffering from neurological disease that were based on eight learning objectives that allowed them to evaluate neuroanatomical data and clinical findings before presenting their case analysis to the larger group. Students’ performances on the formative quizzes and summative tests were compared to those of first‐year medical students in the previous year for whom the self‐directed, small‐group interactive clinical sessions were not available. There was a significant improvement in the summative performance of first‐year medical students with self‐directed clinical case learning in the second year (Y2) of teaching clinical neuroscience (P < 0.05) when compared with first‐year students in the first year (Y1) for whom the self‐directed learning approach was not available. Student performance in the formative assessments between Y1 and Y2 was not significantly different (P = 0.803). A target of ≥70% student scoring above 80% in the final summative examination was met. The current study revealed evidence for the impact and educational outcomes of a self‐directed, clinical teaching strategy in a clinical neuroscience curriculum for first‐year medical students. Anat Sci Educ 11: 478–487. © 2017 American Association of Anatomists.  相似文献   

2.
A novel three-dimensional tool for teaching human neuroanatomy   总被引:1,自引:0,他引:1  
Three‐dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross‐sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented and evaluated a new tool for teaching 3D neuroanatomy to first‐year medical students at Boston University School of Medicine. Students were randomized into experimental and control classrooms. All students were taught neuroanatomy according to traditional 2D methods. Then, during laboratory review, the experimental group constructed 3D color‐coded physical models of the periventricular structures, while the control group re‐examined 2D brain cross‐sections. At the end of the course, 2D and 3D spatial relationships of the brain and preferred learning styles were assessed in both groups. The overall quiz scores for the experimental group were significantly higher than the control group (t(85) = 2.02, P < 0.05). However, when the questions were divided into those requiring either 2D or 3D visualization, only the scores for the 3D questions were significantly higher in the experimental group (F1,85= 5.48, P = 0.02). When surveyed, 84% of students recommended repeating the 3D activity for future laboratories, and this preference was equally distributed across preferred learning styles (χ2 = 0.14, n.s.). Our results suggest that our 3D physical modeling activity is an effective method for teaching spatial relationships of brain anatomy and will better prepare students for visualization of 3D neuroanatomy, a skill essential for higher education in neuroscience, neurology, and neurosurgery. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

3.
Visualizing anatomical structures and functional processes in three dimensions (3D) are important skills for medical students. However, contemplating 3D structures mentally and interpreting biomedical images can be challenging. This study examines the impact of a new pedagogical approach to teaching neuroanatomy, specifically how building a 3D‐model from oil‐based modeling clay affects learners’ understanding of periventricular structures of the brain among undergraduate medical students in Colombia. Students were provided with an instructional video before building the models of the structures, and thereafter took a computer‐based quiz. They then brought their clay models to class where they answered questions about the structures via interactive response cards. Their knowledge of periventricular structures was assessed with a paper‐based quiz. Afterward, a focus group was conducted and a survey was distributed to understand students’ perceptions of the activity, as well as the impact of the intervention on their understanding of anatomical structures in 3D. Quiz scores of students that constructed the models were significantly higher than those taught the material in a more traditional manner (P < 0.05). Moreover, the modeling activity reduced time spent studying the topic and increased understanding of spatial relationships between structures in the brain. The results demonstrated a significant difference between genders in their self‐perception of their ability to contemplate and rotate structures mentally (P < 0.05). The study demonstrated that the construction of 3D clay models in combination with autonomous learning activities was a valuable and efficient learning tool in the anatomy course, and that additional models could be designed to promote deeper learning of other neuroanatomy topics. Anat Sci Educ 11: 137–145. © 2017 American Association of Anatomists.  相似文献   

4.
Recent studies have highlighted a fear or difficulty with the study and understanding of neuroanatomy among medical and healthcare students. This has been linked with a diminished confidence of clinical practitioners and students to manage patients with neurological conditions. The underlying reasons for this difficulty have been queried among a broad cohort of medical, dental, occupational therapy, and speech and language sciences students. Direct evidence of the students’ perception regarding specific difficulties associated with learning neuroanatomy has been provided and some of the measures required to address these issues have been identified. Neuroanatomy is perceived as a more difficult subject compared to other anatomy topics (e.g., reproductive/pelvic anatomy) and not all components of the neuroanatomy curriculum are viewed as equally challenging. The difficulty in understanding neuroanatomical concepts is linked to intrinsic factors such as the inherent complex nature of the topic rather than outside influences (e.g., lecture duration). Participants reporting high levels of interest in the subject reported higher levels of knowledge, suggesting that teaching tools aimed at increasing interest, such as case‐based scenarios, could facilitate acquisition of knowledge. Newer pedagogies, including web‐resources and computer assisted learning (CAL) are considered important tools to improve neuroanatomy learning, whereas traditional tools such as lecture slides and notes were considered less important. In conclusion, it is suggested that understanding of neuroanatomy could be enhanced and neurophobia be decreased by purposefully designed CAL resources. This data could help curricular designers to refocus attention and guide educators to develop improved neuroanatomy web‐resources in future. Anat Sci Educ 11: 81–93. © 2017 American Association of Anatomists.  相似文献   

5.
6.
This usability study evaluated users' perceptions of a multimedia prototype for a new e‐learning tool: Anatomy of the Central Nervous System: A Multimedia Course. Usability testing is a collection of formative evaluation methods that inform the developmental design of e‐learning tools to maximize user acceptance, satisfaction, and adoption. Sixty‐two study participants piloted the prototype and completed a usability questionnaire designed to measure two usability properties: program need and program applicability. Statistical analyses were used to test the hypothesis that the multimedia prototype was well designed and highly usable, it was perceived as: (1) highly needed across a spectrum of educational contexts, (2) highly applicable in supporting the pedagogical processes of teaching and learning neuroanatomy, and (3) was highly usable by all types of users. Three independent variables represented user differences: level of expertise (faculty vs. student), age, and gender. Analysis of the results supports the research hypotheses that the prototype was designed well for different types of users in various educational contexts and for supporting the pedagogy of neuroanatomy. In addition, the results suggest that the multimedia program will be most useful as a neuroanatomy review tool for health‐professions students preparing for licensing or board exams. This study demonstrates the importance of integrating quality properties of usability with principles of human learning during the instructional design process for multimedia products. Anat Sci Ed 2008. © 2008 American Association of Anatomists.  相似文献   

7.
The pedagogical approach for both didactic and laboratory teaching of anatomy has changed in the last 25 years and continues to evolve; however, assessment of student anatomical knowledge has not changed despite the awareness of Bloom's taxonomy. For economic reasons most schools rely on multiple choice questions (MCQ) that test knowledge mastered while competences such as critical thinking and skill development are not typically assessed. In contrast, open‐ended question (OEQ) examinations demand knowledge construction and a higher order of thinking, but more time is required from the faculty to score the constructed responses. This study compares performances on MCQ and OEQ examinations administered to a small group of incoming first year medical students in a preparatory (enrichment) anatomy course that covered the thorax and abdomen. In the thorax module, the OEQ examination score was lower than the MCQ examination score; however, in the abdomen module, the OEQ examination score improved compared to the thorax OEQ score. Many students attributed their improved performance to a change from simple memorization (superficial learning) for cued responses to conceptual understanding (deeper learning) for constructed responses. The results support the view that assessment with OEQs, which requires in depth knowledge, would result in student better performance in the examination. Anat Sci Educ 11: 254–261. © 2017 American Association of Anatomists.  相似文献   

8.
A teaching tool that facilitates student understanding of a three‐dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands‐on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut‐out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low‐fidelity models. Anat Sci Educ 6: 277–280. © 2013 American Association of Anatomists.  相似文献   

9.
The authors evaluated the effectiveness of a brief training intervention with graduate counseling students who used the HIRE (history, interest in change, reasons for engaging in the behavior, and exposure to risk; Buser & Buser, 2013b ) model for the informal assessment of nonsuicidal self‐injury. The intervention group demonstrated improvements in nonsuicidal assessment self‐efficacy and assessment skill. Findings suggest that HIRE is an evidence‐informed model for teaching nonsuicidal self‐injury assessment.  相似文献   

10.
Videos can be used as didactic tools for self‐learning under several circumstances, including those cases in which students are responsible for the development of this resource as an audiovisual notebook. We compared students' and teachers' perceptions regarding the main features that an audiovisual notebook should include. Four questionnaires with items about information, images, text and music, and filmmaking were used to investigate students' (n = 115) and teachers' perceptions (n = 28) regarding the development of a video focused on a histological technique. The results show that both students and teachers significantly prioritize informative components, images and filmmaking more than text and music. The scores were significantly higher for teachers than for students for all four components analyzed. The highest scores were given to items related to practical and medically oriented elements, and the lowest values were given to theoretical and complementary elements. For most items, there were no differences between genders. A strong positive correlation was found between the scores given to each item by teachers and students. These results show that both students' and teachers' perceptions tend to coincide for most items, and suggest that audiovisual notebooks developed by students would emphasize the same items as those perceived by teachers to be the most relevant. Further, these findings suggest that the use of video as an audiovisual learning notebook would not only preserve the curricular objectives but would also offer the advantages of self‐learning processes. Anat Sci Educ 7: 209–218. © 2013 American Association of Anatomists.  相似文献   

11.
Embryology is integrated into the Clinically Oriented Anatomy course at the Texas Tech University Health Sciences Center School of Medicine. Before 2008, the same instructor presented embryology in 13 face‐to‐face lectures distributed by organ systems throughout the course. For the 2008 and 2009 offerings of the course, a hybrid embryology instruction model with four face‐to‐face classes that supplemented online recorded lectures was used. One instructor delivered the lectures face‐to‐face in 2007 and by online videos in 2008–2009, while a second instructor provided the supplemental face‐to‐face classes in 2008–2009. The same embryology learning objectives and selected examination questions were used for each of the three years. This allowed direct comparison of learning outcomes, as measured by examination performance, for students receiving only face‐to‐face embryology instruction versus the hybrid approach. Comparison of the face‐to‐face lectures to the hybrid approach showed no difference in overall class performance on embryology questions that were used all three years. Moreover, there was no differential effect of the delivery method on the examination scores for bottom quartile students. Students completed an end‐of‐course survey to assess their opinions. They rated the two forms of delivery similarly on a six‐point Likert scale and reported that face‐to‐face lectures have the advantage of allowing them to interact with the instructor, whereas online lectures could be paused, replayed, and viewed at any time. These experiences suggest the need for well‐designed prospective studies to determine whether online lectures can be used to enhance the efficacy of embryology instruction. Anat Sci Educ 7: 234–241. © 2013 American Association of Anatomists.  相似文献   

12.
The anatomy of the pelvis is complex, multilayered, and its three‐dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three‐dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using cryosection images obtained from the Visible Human Project, in conjunction with a general‐purpose three‐dimensional segmentation and surface‐rendering program. Anatomical areas of interest were identified and labeled on consecutive images. Each 2D slice was reassembled, forming a three‐dimensional model. The model includes the pelvic girdle, organs of the pelvic cavity, surrounding musculature, the perineum, neurovascular structures, and the peritoneum. Each structure can be controlled separately (e.g. added, subtracted, made transparent) to reveal organization and/or relationships between structures. The model can be manipulated and/or projected stereoscopically to visualize structures and relationships from different angles with excellent spatial perception. Because of its ease of use and versatility, we expect this model may provide a powerful teaching tool for learning in the classroom or in the laboratory. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

13.
While the significance of the social model of disability for articulating inclusive approaches in education is recognised, the application of capability theory to education is less well developed. This article by Jo Trowsdale of the University of Warwick and Richard Hayhow of Open Theatre considers how a particular theatre‐based practice, here described as ‘mimetics’, can alter and extend the aspirations and achievements of children and young people with learning disabilities, and might be understood as applied capability theory or ‘capability practice’. Mimetics has been crafted from experimental psycho‐physical actor‐training processes by Open Theatre Company working in collaboration with actors with learning disabilities, and adapted to support the learning and development of young people with learning disabilities. This study draws upon an action research project set up by Creative Partnerships with Open Theatre Company and a special school, where children demonstrated increased motivation and capacity for communication and socialisation, improved well‐being, learning and wider achievement. To illustrate the process, we offer a case study of one child with an autistic spectrum disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号