共查询到20条相似文献,搜索用时 0 毫秒
1.
张皓 《四川教育学院学报》2002,18(12):33-33
含参数不等式恒成立时 ,参数的取值范围问题是中学数学的难点之一 ,也是高考数学复习的一个热点 ,由于这类问题的条件均以“恒成立”的方式给出 ,多数学生对此只能作出表面理解 ,又由于在教材中找不到解决这类问题的理论依据 ,因此在解答这类问题时觉得困难。本文介绍几种常见方法 ,对这类问题进行实质性的分析、解答 ,供参考。1、利用一次函数的性质(1)一次函数 y =f(x) =kx +b ,在x∈ [m ,n]上f(x) >0恒成立的充要条件是 :k >0f(m) >0 或 k <0f(n) >0 或 f(m) >0f(n) >0(2 )一次函数 y =f(x) =kx +b在x∈ [m… 相似文献
2.
3.
张国良 《中学数学研究(江西师大)》2003,(12):23-27
在高考和竞赛中,常常出现不等式恒成立时求参数的取值范围问题.由于这类问题具有"变"与"不变"的特点,其内容涉及高中数学的多个分支,且容易与相关问题混淆,同学们处理起来确实存在很大困难.本文将通过实例来探讨这类问题的若干求解策略. 相似文献
4.
王丽 《数理化学习(高中版)》2013,(4):5-6
不等式恒成立问题中参数范围的求解问题,它涉及的知识面广、综合性强是学生学习的难点,从而成为高考和竞赛试题中的热点问题,尤其是在最近几年的高考试题中屡屡出现,由于学生对此类问题求解方法的领会还不够透彻,缺乏系统的理解和把握,因而解答问题的过程中往往较繁还极易产生错解,为此笔者对这类问题进行总结,给出解决问题一般方法,指明此种问题的一般求解策略,以飨读者. 相似文献
5.
6.
沙金城 《中学数学研究(江西师大)》2021,(4)
关于不等式恒成立中参数范围求解问题,是不等式问题中相对拔高的题型,解决它需要掌握不等式的性质和常用处理方法,及熟练的解题技巧,本文以例题分析为手段,表述破解此类问题的常用策略,供读者参考.一、转化求解当不等式解的范围已给出时,若能进一步分离出含参数的不等式,通过求出不等式的解集进行处理. 相似文献
7.
不等式恒成立是中学数学的一类常见问题,集合、不等式、函数(数列)的最值与单调性等都与不等式恒成立问题相关,同时由于处理不等式恒成立问题往往需要使用多种数学思想与方法,因此也成为各类考试包括各地高考中的热点问题.不等式恒成立问题中的参数范围求解,很多文章对此进行研究,并给出了许多处理方法.结合常见数学思想方法和不等式恒成立的数学本质,对于求解不等式恒成立的参数范围问题,笔者认为主要有如下三种方法. 相似文献
8.
不等式是高中数学的重要内容之一,而含参数不等式恒成立问题,既是教学中的一个难点,又是近几年高考和竞赛的一个热点.下面结合实例,介绍这类问题的几种求解策略. 相似文献
9.
确定恒成立不等式中参数的取值范围,是不等式中的热点问题.由于这类问题涉及的知识面广,要求有较高的解题技巧,因此它又是学习中的难点问题.本文试举例介绍这类问题的求解策略. 相似文献
10.
已知一个数学式恒成立,求参数的取值范围,这类题常作为考试题的难题、压轴题、高分点题出现,对这类题先摸清解题的方向,理清解题的思绪,莫畏难.解这类题,还是有一般规律可循的. 相似文献
11.
1参数分离法例1设()lg[(239)/7]xxxfx= ?c在(]?∞,1上有意义,求实数c的取值范围.解由题设可知,2390xxx ?c>对x∈(]?∞,1恒成立.即(2/9)(1/3)xx??g(x),即c>g(1)=(?2/9)?(1/3)=?5/9,即c的取值范围是(?5/9, ∞).2判别式法例2如果不等式22221463xmxmxx <对一切实数x均成立,则实数m的取值范围.解∵224x 6x 3=(2x 3/2) 3/4>0对一切x∈R恒成立,从而原不等式等价于22x 2mx m<24x 6x 3(x∈R)恒成立,即2… 相似文献
12.
不等式恒成立条件下参数的范围问题,好多同学常常一筹莫展,我们如果能了解其题型特点,制订选择合适的解题策略,解决此类问题就游刃有余。1 利用最值求不等式恒成立条件下参数的取值范 相似文献
13.
严波 《中国数学教育(高中版)》2014,(10):53-55
恒成立问题是高中数学教学中的一个重点和难点.恒成立问题能够很好地考查函数、数列、不等式等知识,以及转化、化归等数学思想.因此,涉及恒成立的问题越来越受到高考命题者的青睐.针对高中数学中的不等式恒成立问题,从解题方式的角度进行分类,并通过实例探讨各类不等式恒成立问题的解法. 相似文献
14.
严波 《中国数学教育(高中版)》2014,(20)
恒成立问题是高中数学教学中的一个重点和难点.恒成立问题能够很好地考查函数、数列、不等式等知识,以及转化、化归等数学思想.因此,涉及恒成立的问题越来越受到高考命题者的青睐.针对高中数学中的不等式恒成立问题,从解题方式的角度进行分类,并通过实例探讨各类不等式恒成立问题的解法. 相似文献
15.
求参数的取值范围是综合性较强、难度较大且出现频率较高的题型 ,本文介绍恒成立条件下几种参数范围的求解方法 ,供参考 .1 曲线恒过定点———直接法有关含有参数的曲线恒过某定点的问题 ,一般使用直接法 ,即将该定点坐标代入方程 ,从而求出参数的取值范围 .例 1 已知直线 ( 1 sinθ)x ( 1-cosθ)y - 3 =0恒过定点 ( 1,1) ,求参数θ的取值范围 .解 由直线 ( 1 sinθ)x ( 1-cosθ)y - 3 =0过定点 ( 1,1) 1 sinθ 1-cosθ - 3 =0 sinθ -cosθ=1 sin(θ- π4 ) =22 θ - π4 =2kπ π4 或θ - π4 =… 相似文献
16.
不等式恒成立问题是近几年高考和各种考试的热点内容,它综合考查函数、方程和不等式的主要内容,且与函数的最值、方程的解和参数的取值范围紧密相连.本文结合解题教学实践举例说明几种不等式恒成立问题的求解策略,以飨读者. 相似文献
17.
朱峰 《数理化学习(高中版)》2010,(6)
求不等式恒成立参数范围的问题,是近几年高考的热点.由于这类问题涉及的知识面广,要求有较高的解题技巧,具有一定的综合性,因此它又是学习中的难点问题.本文试举例介绍几种如何求这类题的方法.一、判别式法例1已知不等式(?)≥2对任意的x∈R恒成立,求实数k的取值范围.解:因为x~2+x+2>0,所以不等式等价于 相似文献
18.
求含参数不等式中参数取值范围的问题,是一类重要的数学题型,也是历年高考考查的重点和热点.本文通过若干典型实例说明解决这类问题的一些基本策略.点评将参数不等式的参数与变量分离于不等式两边,使其变为g(a)〈f(x)或g(a)〉f(x)(其中。为参数)的形式来研究参数的变化情况,方便了利用函数的性质求出参数的取值范围. 相似文献
19.
通常,含参不等式恒成立问题指的是,问题中含有参数的不等式对于给定区间内任意值都成立.这种类型的题目设问灵活,能够在考查学生的思维灵活性、创造性能力方面起到独特的作用,也有利于考查学生的综合解题能力,因此成了高考命题的一个热点.不少学生遇到这个问题常感到无从下手,有的题目即使能做出,也感到计算量大,耗 相似文献
20.
<正>求含参数不等式中参数取值范围的问题,是一类重要的数学题型,也是历年高考考查的重点和热点.本文通过若干典型实例说明解决这类问题的一些基本策略. 相似文献