首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
近几年来,关于函数图像的切线问题,逐渐进入高考试卷,并在不断加大考查力度和与相关知识融合的力度,已经成为高考的热点.导数为这类问题的解决提供了新思路、新方法、新途径,拓宽了高考的命题空间.下同介绍高考切线问题的七种类型,并力求运用导数知识解决问题的主要思想方法,供复习参考.1求过一点的曲线的切线方程例1(2007年浙江省高考题)曲线y=x3-2x2-4x+2在点(1,-3)处的切线方程是.解显然点(1,-3)在曲线y=x3-2x2-4x+2上.因为y′=3x2-4x-4,所以y′│x=1=-5,因此所求切线方程为y+3=-5(x-1),即5x+y-2=0.例2(2006年全国高考题)过点(-1,0)作抛物线y=x2+x+1的切线,其中一条为().(A)2x+y+2=0(B)3x-y+3=0(C)x+y+1=0(D)x-y+1=0错解y′=2x+1,y′│x=-1=-1.故过点(-1,0)的抛物线的切线方程是y-0=-1(x+1),即x+y+1=0,所以选C.正解显然(-1,0)不在抛物线y=x2+x+1上.设切点坐标为P(x0,y0),则y0=x20+x0+1.过点P的切线方程是y-(x20+x0+1)=(2...  相似文献   

2.
人教版全日制普高教材《数学》第二册(上),求圆的切线方程,就出现一道例题,一道练习题,一道复习参考题.下面笔者就经过点(x,y),求圆的切线方程给出几种解法,并比较最佳求法.已知圆的方程(x?a)2+(y?b)2=r2,求经过点M(x0,y0)的切线方程.分析根据圆的切线性质,过圆上一点有且只有一条直线和圆相切,过圆外一点有且只有两条直线和圆相切.解法一不妨设切线的斜率为k(若k无解,则表示相应切线斜率不存在,以下同),则切线方程为y?y0=k(x?x0),把y=kx?(kx0?y0)代入(x?a)2+(y?b)2=r2,得222(x?a)+[kx?(kx0?y0+b)]=r,整理得22(1+k)x?2[k(kx0?y0+b)+a]x+222…  相似文献   

3.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

4.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

5.
数学问题考查的不仅仅是同学们的数学思维能力,同时也考查同学们对数学语言的理解能力,即对题目给出的数学语言怎样理解,理解后怎样转化为熟悉的数学问题并进行解决的能力.所以做数学题目时,在理解数学语言上要“咬文嚼字”.下面举几个例子说明.“咬文嚼字”一“过”和“在”不同【例1】曲线y=x3+x+1过点(1,3)处的切线方程是.错解切线的斜率为y′|x=1=(3x2+1)|x=1=4,故所求的切线方程是y=4(x-1)+3,即4x-y-1=0.剖析“过”点(1,3)的切线方程,说明(1,3)不一定是切点,这时切线可能不只一条.就必须通过设切点来求.设切点坐标为(x0,y0),对y=x3+x+1求导得y′=3x2+1,故切线的斜率为3x02+1,于是切线方程为y=(3x02+1)(x-x0)+y0,由于点(1,3)在切线上,故有3=(3x02+1)(1-x0)+y0①又切点在曲线上,即y0=x03+x0+1②解①②得x0=1y0=3或x0=-21.y0=83当x0=1y0=3时,切线斜率为4,方程为4x-y-1=0;当x0=-21y0=83时,切线斜率为47,方程为7x-4y+5=0.错解是求曲线y=x3+x+1在点(...  相似文献   

6.
曲线y=f(x)在点x0的导数f′(x0)就是曲线在该点的切线的斜率,本文对用导数几何意义求切线引起的误解进行剖析.已知曲线C:y=2x-x3,求过点A(1,1)的切线方程.(2005年全国高考卷Ⅲ文科15题改编)误解:显然点A(1,1)在曲线C:y=2x-x3上,f′(x)=2-3x2∴f′(1)=-1∴过点(1,1)的切线方程为:y-1=-1(x-1),即y=-x 2解析:由于点A(1,1)恰好在曲线y=f(x)上,因此容易得到一条切线方程,即以点A为切点的切线.但本题求的是“经过点A的切线”,而不是“在点A处的切线”,因而不排除有其他切线经过A.因此本题切线应有两条,一条以点A为切点,另一条不以点A为切点但…  相似文献   

7.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

8.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

9.
例题的推广     
全日制普通高级中学教科书数学(试验修订本)第二册(上)中有这样一道例题(§7.7例2). 已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线的方程. 解(略)所求切线方程为xx0+yy0=r2. 此切线方程简捷明了,体现了数学美,这里我们也许会想到当M(x0,y0)在圆x2+y2=r2的内部、外部时方程xx0+yy0=r2有何几何意义呢? 定理1 已知圆的方程是x2+y2=r2,点  相似文献   

10.
题目:在平面直角坐标系xOy中,有一个以F1(0,-3)和F2(0,3)为焦点、离心率为23的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与X、Y轴的交点分别为A、B,且向量OM=OA+OB,求(Ⅰ)点M的轨迹方程.(Ⅱ)|OM|的最小值.解析:(Ⅰ)解答过程见原《参考答案》.显见,《参考答案》中是采取“用导数求斜率”的方法得到过P点的切线方程为:y=-4yx00(x-x0)+y0(1)而另一种方法是基于如下的一般结论:设点(x0,y0)是曲线上任一点,用x0x、、y0y分别代替原曲线方程中的x2、y2项;用x02+x、y02+y分别代替原曲线方程中的x、y项,那么,所得方程…  相似文献   

11.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

12.
曲线C在点P(x0,y0)曲率圆是与该曲线C相切于点P(x0,y0)(凹侧)的最大圆,曲率圆的圆心D的轨迹曲线G称为曲线G的渐屈线.抛物线y2=2px(p>0)、椭圆x2/a2+y2/b2=1和双曲线x2/a2-y2/b2=1的渐屈线方程分别为y2=8/27P(x-p)3、x3/(c2/a2/3=1和x3/(c2/a2/3-y3/(c2/b)2/3=1.抛物线、椭圆和双曲线的最小曲率圆都是它们的内切圆,其方程分别为(x-P)2+y2=p2、(x±c2/a)2+y2=b4、(x±c2/a)2+y2=b4/a2.  相似文献   

13.
1.问题高中新教材数学第三册114页谈到导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f’(x0),切线方程为: y-y0=f'(x0)(x-x0) (*)所以可利用导数求曲线的切线方程. 问题1 点P不在曲线上如何用导数方法求过点P的切线方程? 问题2 点P在曲线上,过点P作曲线的切线只有一条吗?即方程(*)惟一吗?  相似文献   

14.
找准切点求切线例1求曲线(fx)=x3-3x2+2x过原点的切线方程.错解由于原点在曲线上,所以原点为切点.而f′(x)=3x2-6x+2,所以f′(0)=2.所以y-0=2(x-0),即所求切线方程为y=2x.  相似文献   

15.
正导数的几何意义就是曲线在该点处的切线斜率,下面笔者结合近几年高考例析导数的几何意义的多维应用.维度1抓住切点究两线题1(2013·天津文19选摘)已知函数f(x)=4x3+3x2-6x,求曲线y=f(x)在点(0,f(0))处的切线方程.  相似文献   

16.
一、混淆曲线y=f(x)在点P处的切线与过点P的切线例1已知曲线y=f(x)=(1/3)x~3上一点P(2,8/3),求过点P的切线方程。错解:f′(x)=x~2.设过点P的切线的斜率为k,则k=f′(2)=4.  相似文献   

17.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

18.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

19.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

20.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号