首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
<正>本文先给出基本不等式的一个等价变形,再举例说明它的广泛应用.结论已知a、b、λ∈R,且b(a+b)> 0,则有ab≥-λ2+(λ+1)2+(λ+1)2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2a/(a+b),(*)当且仅当a=λb时取等号.证明由不等式a2+λ2+λ2b2b2≥2λab,得a2≥2λab,得a2≥2λab-λ2≥2λab-λ2b2b2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2.两边同时加上ab并整理,得a(a+b)≥b[(2λ+1) a-λ2b].再两边同时  相似文献   

2.
陕西安振平老师在文[1][2]两次提出了如下一个颇有难度的无理不等式猜想,即已知a,b,c为正实数,则(a2/(a2+26bc))1/3+(b2/(b2+26ac))1/3+(c2/(c2+26ab))1/3≥1.(1)笔者经过一年多研究发现这个猜想不等式是成立的,现给出证明.证明:设x=(bc)/(a2),y=(ac)/(b2),z=(ab)/(c2),则不等式(1)等价于下面命题,即x,y,z为正实数且xyz=1.则  相似文献   

3.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

4.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

5.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

6.
<正>在求形如(A+B(1/2))(1/2))(1/3)+(A-B(1/3)+(A-B(1/2))(1/2))(1/3)(B≥0)的两个三次根式的代数和时,我们可把整个三次根式设为一个新变元,令x=(A+B(1/3)(B≥0)的两个三次根式的代数和时,我们可把整个三次根式设为一个新变元,令x=(A+B(1/2))(1/2))(1/3)+(A-B(1/3)+(A-B(1/2))(1/2))(1/3),然后利用两数和的立方公式:(a+b)(1/3),然后利用两数和的立方公式:(a+b)3=a3=a3+b3+b3+3ab(a+b)【此公式可通过(a+b)3+3ab(a+b)【此公式可通过(a+b)3=(a+b)3=(a+b)2(a+b)=(a2(a+b)=(a2+2ab+b2+2ab+b2)(a+b)求得.】将变换后的式子两边三次方,得到关于x的  相似文献   

7.
<正>1两种解法都正确吗问题设函数f(x)=|lgx|,若a≠b,且f(a)=f(b),求a+b的取值范围.解法1由已知不妨设a1.因为f(a)=f(b),所以lga=lgb.所以-lga=lgb,lga+lgb=0.所以lgab=0,ab=1.所以a+b≥2(ab)(1/2)=21=2.因为a≠b,所以上式取不到"="号.所以a+b的取值范围为(2,+∞).反思这是很多数学参考资料中的解答.仔细思考这种解法严密吗?(a+b)取不到2就能得出(a+b)的取值范围为(2,+∞)吗?大于2的一切实数都能取得到吗?  相似文献   

8.
本文主要将斐波那契数列推广到更一般的二维线性递归数列{Tn}.{Tn}满足Tn=(I,n=1,a,n=2,aTn-1+bTn-2,n≥3,其中a,b∈R且a2+4b>0,给出并证明了其通项公式Tn=1/(a2+4b)1/2[((a+(a2+4b)1/2)/2)n-(a-(a2+4b)1/2)n;其次证明了其性质TnTn+d-Tn+1Tn+d-1=-(-b)n+1Td-1,其中d≥2;最后例说了通项的应用.  相似文献   

9.
<正>证明不等式的方法有很多,有基本不等式法、函数法等.本文从一个独特的视角,采用全新的方法来证明不等式,即数形结合法,透过不等式的表面发现其几何意义,构造相应的几何图形来阐述不等式,将抽象问题具体化,直观化.题目设a>0,b>0,证明不等式2ab/(a+b)≤(ab)(1/2)≤(a+b)/2≤((a(1/2)≤(a+b)/2≤((a2+b2+b2)/2)2)/2)(1/2),当且仅当a=b时等号成立.思路这是2017年苏州市的一道高考模  相似文献   

10.
性质1设点P(m,n)是第一象限内的定点,直线l:x/a+y/b=1过点P(m,n),且截距a,b均大于零,则(1)当b/a=(n/m)1/2时,a+b有最小值m+n+ 2(mn)1/2;(2)当b/a=n/m时,ab有最小值4mn.  相似文献   

11.
题目已知a,b,c≥0,且a+b+c=1,求证(a+1/4(b-c)21/2+b1/2+c1/2≤31/2.(07年女子数学奥林匹克)分析所证不等式中(a+1/4(b-c)21/2的出现,给解题增加了难度.如果由此入手,寻找问题突破口,就会发现"(a+1/4(b-c)21/2"可以放大为"(a+1/2(b1/2-c1/2)2)1/2",从而用放缩法求  相似文献   

12.
1.会整体考虑例1已知a,b∈R+,且a+b=1,求(2a+1)1/2+(2b+1)1/2的最大值.分析整体考(2a+1)1/2和(2b+1)1/2,配成与条件相符合的式子.  相似文献   

13.
均值不等式体现了"和式"与"积式"之间的转化与放缩.在均值不等式中,如果a、b∈R+,则有(a+b)/2≥(ab)1/2(当且仅当a=b时取等号),利用该不等式的"和定积最大,积定和最小"原理,可以求解物理中的极值问题.  相似文献   

14.
b2=|b|2=(2n-3m)2=9m2-12m·n+4n2=9-12×1/2+4=7,∴|a|=71/2,|b|=71/2.又∵a·b(2m+n)·(2n-3m)=-6m2+m·n+2n2=-6+1/2+2=-31/2,∴cos〈a,b〉=(a·b)/(|a||b|)=(-31/2)/(71/2×71/2)=-1/2,∴向量a与向量b所成的角为120°.  相似文献   

15.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

16.
拆项求最值     
对于不能直接运用均值定理处理的"积定和最小"问题,一个有效的方法是拆项.结论对于函数f(x)=x+a2/x(x∈R+,a为正常数),设b为正常数.(1)若bmin =f(b);(2)若b≥a,则当x∈[b,+∞)时,[f(x)]min=f(b).证明f(x)=x+a2/x =(x+b2/x)+(a2-b2)/x.(1)若b相似文献   

17.
在学习二次根式知识的过程中,我们会经常遇到有关的运算问题,求解此类问题时,如果能够掌握一些比较常用的方法和技巧,不仅可以简化解题过程,而且可以快速正确地求解.一、巧用定义例1求(1-a)1/2-(a-1)1/2+2012a的值.解:由1-a≥0,得a≤1;又a-1≥0,得a≥1.从而可知a=1.故原式=0-0+2012×1=2012.二、逆用公式例2化简31/2+51/2/(41/2+151/2)1/2解:显而易见原式大于零,故有  相似文献   

18.
1.设函数f(x)=cos x/4(sin x/4+cos x/4)-1/2。(1)求函数y=f(x)取最值时x的取值集合;(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围。2.已知函数f(x)=ax+b(1+x21/2(x≥0)的图像经过(0,1),且f(31/2)=2-31/2。(1)求f(x)的值域;  相似文献   

19.
<正>在学习过程中,同学们会经常遇到不等式问题,经过归纳总结以及分析感悟,我觉得对于高中阶段的不等式问题,只要掌握了基本不等式的性质及解法,其他问题都会迎刃而解。1.基本不等式:(1)a,b∈R时,a2+b2+b2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2+b2+b2/2,当且仅当a=b时取等号。  相似文献   

20.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号