首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
向量是研究立体几何的一个强有力的工具.我们可以利用向量的运算(特别是数量积)解决点、直线、平面之间的平行、垂直、夹角问题.  相似文献   

2.
在立体几何中。新教材的特点之一是引人向量.以前的教材中证明异面直线互相垂直和线面垂直时,常需作辅助平面,特别是研究线线垂直时,有时还要解三角形,这样往往要添加很多辅助线,使图形复杂,计算复杂.如果借助向量来解决这类问题,就容易多了.下面用向量来研究两个问题.  相似文献   

3.
现行过渡教材(B)尝试用空间向量来处理立体几何,但作为过渡教材,还是保留大部分定理,是一种“向量代数法”与“综合演绎法”相结合的折衷做法。在新一轮的高中课程改革中,这一步我们能走多远?能否完全用向量计算来取代综合演绎?这当然是需要综合《数学教育学》的各方面因素进行平衡、取舍,才能得出最后的结果,本只是从部分角度对此问题进行一些研究,供读参考。  相似文献   

4.
空间向量在立体几何中的应用   总被引:1,自引:0,他引:1  
向量引入中学数学 ,大大丰富和发展了中学数学知识结构体系 ,进一步拓宽了中学数学问题解决的思维空间 .空间向量在处理立体几何中有关度量、角度、平行、垂直等问题时具有独到之处 ,可以减少一些复杂的思维和推理过程 ,提高解题效率 .现就空间向量在立体几何中的有关应用分别举例说明 .一、平行问题( 1)共线向量定理 :对空间任意两个向量a、b(b≠o) ,a∥b的充要条件是存在实数λ ,使a =λb .( 2 )设a =(a1 ,a2 ,a3) ,b =(b1 ,b2 ,b3) ,a∥b a1 =λb1 ,a2 =λb2 ,a3=λb3.例 1 已知直线OA⊥平面α ,直线BD⊥平面α ,O、B为垂足 ,求证 :…  相似文献   

5.
立体几何可以有效培养学生的空间想象能力和逻 辑推理能力,因而立体几何在高中阶段的数学教材中占有很大 的篇幅。而目前大部分学生表示对于立体几何的内容的掌握 有一定难度,而将空间向量引入立体几何中正好可以帮助学生 减少一些复杂推理过程,能够提高学生的解题效率,帮助学生 掌握立体几何的内容。本文以人教版教材为例,就高中数学立 体几何与空间向量在高中数学立体几何中的应用展开探讨,希 望能够为其他从事数学教学工作的人员起到借鉴的作用。  相似文献   

6.
空间向量在立体几何中应用   总被引:1,自引:0,他引:1  
本文初步探讨了空间向量作为一种新的思维工具在解答立体几何问题中的应用,显示出向量的思想方法在解决问题过程中的优越性、新颖性、简洁性。  相似文献   

7.
空间向量知识是高中数学教学的重要内容之一,是利用代数知识解决几何问题的重要手段.因此,我们必须对空间向量进行深入研究,提高学生解决问题的能力.  相似文献   

8.
关于空间向量在立体几何中的应用问题,其中最主要的计算都是围绕平面的法向量展开的.在绝大部分题目中,空间向量是作为数学工具来解决两类问题:一、垂直问题,尤其是线面垂直问题(面面垂直基本类似);二、角度问题,主要讲二面角的平面角通过两个平面法向量所成的角来进行转化(线面角与此类似).而立体几何中的平行问题一般是用基本定理来进行解决的.  相似文献   

9.
随着新课改的逐步深入,高考数学中越来越重视考查同学们空间想象能力、应用知识与解决问题的能力。空间向量的引入为代数方法处理立体几何问题提供了一种重要的工具和方法,以下笔者举例说明。  相似文献   

10.
<正>新课程苏教版《数学》教材(选修2-1),给出了平面α的法向量的定义,但却没有对它的应用作系统的讲解,而法向量在空间几何中扮演着一个非常重要的角色.法向量的应用打破了空间几何的传统解法,可以减少大量的辅助作图以及对图形的分析、想象,可以直接使用代数运算来解决空间几何中的证明  相似文献   

11.
一、空间向量在线面关系证明中的应用 例1 如图,在底面为平行四边形的四棱锥P—ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.  相似文献   

12.
高中数学新教材增添了"空间向量"这一节知识,它是平面向量的延续和推广,为我们提供解立体几何问题的工具性知识.由于空间向量本身具有代数形式(有序实数对表示)与几何形式(有向线段表示)的双重特点(数形兼备),因此在向量知识的整个学习过程都体现了数形结合的思想方法,注重转形为数,突出数的运算.  相似文献   

13.
空间向量作为一种工具,可以解决立体几何中的一些用纯几何方法解决较困难的问题,特别是在空间距离的求解过程中,更显示出其作为数学工具的巨大威力.下面具体说明如何用空间向量求解“空间距离”.  相似文献   

14.
本文介绍空间向量在解决立体几何问题中的关键作用.通过具体的例子,展示如何运用空间向量的解题技巧,并给出详细的步骤和数值计算.此外,还探讨空间向量在不同类型问题中的应用,以及相关的数学原理.通过这些例子和讨论,希望读者能够更好地理解和应用空间向量在解决立体几何问题中的作用.  相似文献   

15.
以立体几何为背景的探索性问题是近年来高考数学命题创新的一个显著特点,它以其较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题涉及到的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用向量方法处理,尤其是引入坐标表达的空间向量,通过待定系数法求解存在性问题则思路简单,解法固定,操作方便.下面举例谈谈向量法求解立体几何探索性问题的类型和方法.  相似文献   

16.
作为教材改革的一个重要特征,我国新高中数学教材引入了平面向量.中学数学教材引入向量的主要目的是介绍向量这一有力新工具用以方便地研究有关数量问题,特别是用向量法处理几何问题,其独特之处是形象化、算法化和简洁化.现运用新教材里介绍的向量知识,谈谈向量在中学立几解题中的应用.  相似文献   

17.
随着新教材的推广使用,利用向量的模和夹角求空间的线段长和两直线的夹角,利用向量的数量积来求空间的线与线之间的来角和距离,线与面、面与面之间所成的角和距离,已成为新高考命题的一个热点.  相似文献   

18.
立体几何中,平行、垂直、距离和角是主要问题,而以它们为背景的探索性问题是近年来高考数学命题创新的一个显著特点.由于此类问题涉及到的点具有不确定性,所以用传统的解法难度较大.而用向量方法处理,则思路简单,操作方便.下面举例谈谈向量解法在立体几何探索性问题中的应用.  相似文献   

19.
空间向量在处理立体几何问题中提供了新的方法,是十分有效的代数工具,特别是当空间想象力不够,辅助线不知从哪儿画,对题目无从下手时,可以尝试建立直角坐标系,用空间向量的方法来转化问题,从而使问题得以解决。本文通过典型的例题来浅谈空间向量法在立体几何中的应用。  相似文献   

20.
空间向量在立体几何中的应用   总被引:1,自引:0,他引:1  
本文说明把空间向量引入立体几何后,线面垂直、角和距离的度量问题可以通过向量运算来解决,有利于立体几何的教与学.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号