首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
正弦定理sinaA=sinbB=sincC和余弦定理a2+b2-2ab·cosC=c2b2+c2-2bc·cosA=a2a2+c2-2ac·cosB=b2是三角形边角关系的美妙体现,它们的发现和证明都显示着人类的智慧,是人类文明史上灿烂的一页.在数学和物理学领域中,很多方面都渗透出正弦定理和余弦定理的气息.本文试图用物理方法给出正弦定理和余弦定理的证明.设三角形ABC是边长分别为a、b、c的通电导线框,其电流强度为I.现将它置于磁感应强度为B的匀强磁场中且线框平面与磁场方向垂直,那么三角形ABC的三边所受的安培力如图1所示,其大小分别为图1Fa=BIaFb=BIbFc=BIc(1)很显然,这三…  相似文献   

2.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

3.
用余弦定理证明几何命题,常常可以不添或少添辅助线,且思路清晰。现将余弦定理在证明几个著名定理中的应用介绍如下: 1.托勒密定理 在圆内接四边形ABCD中,求证:AC·BD=AB·CD+AD·BC(如图1) 证明 记AB=a,BC=b,CD=c,AD=d,AC=e,BD=f。即证ef=ac+bd。图1 因 cosA=-cosC,应用余弦定理,得  相似文献   

4.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

5.
我们在初中已学过正弦定理和余弦定理:在△ABC中,角A、B、C所对的边分别为a、b、c,其外接圆半径为R,则有 a/sinA=b/sinB=c/sinC=2R及 a~2=b~2+c~2-2bccosA. 应用正弦定理把余弦定理中的边都化为角,则有: sin~2A=sin~2B+sin~2C-2sinBsinCcosA. 可以证明当A+B+C=kπ,k为奇数时此式都成立。我们不妨把上式称为正——余弦定理。下面举例说明这个定理的应用。例1 求sin~210°+cos~240°+sin10°cos40°的值。  相似文献   

6.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

7.
本文对《几个三角公式及其应用》(“数学通讯”,5,1981)一文的定理1,2作出一个简化证明。原文定理1 设等差数列α_1,α_2,…,α_n的公差为d,则 sum from k=1 to n sinα_k=sin(α_1+n-1/2d)sinn/2d/sind/2 原文定理2 设等差数列α_1,α_2,…,α_n的公差为d,则 sum from k=1 to n cosα_k=cos(α_1+n-1/2-d)sinn/2d/sind/2。证明考虑公式 f(π/2±α)·sinβ=1/2[f(α+β)-f(α-β)]。(1)其中f代表正弦或余弦。若f代表正弦,则左边第一个因式中的α前面取负号,反之取正号。此(1)式是三角函数积化为和公式中某两个公式的综合表  相似文献   

8.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

9.
本刊1985年4期《刊登的托勒密定理的证明及其应用》一文中,用贝利切那德定理推出了托勒密定理的逆定理,证明过程冗繁,不易为读者接受,这里给出一种简单证法。已知:在四边形ABCD中AB·CD+BC·AD=AC·BD,  相似文献   

10.
把三角形中的边、角和面积统一起来的三个重要定理:正弦定理、余弦定理和面积定理,不仅在处理与三角形有关的问题中起着重要的作用,而且在证明涉及到边、角和面积的不等式中也有广泛的应用,其中用正弦定理:a=2RsinA,b=2RsinB,c=2RsinC可将不等式中的边转化为角,从而不等式可转化为三角不等式而得以证明;用余弦定理可将不等式中出现的边的平方,例如c~2用a~2+b~2-2abcosC代换,原不等式变量减少,此时不等  相似文献   

11.
正弦定理和余弦定理是架起三角形边角关系的两座桥梁,是解三角形的两个有力武器,锐不可当.重点难点1.正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R表示△ABC外接圆的半径).2余弦定理:a~2=b~2+c~2-2bccosA;b~2=c~2+a~2-2cacosB:c~2=a~2+b~2-2abcosC.3.三角形面积公式:S=1/2ah_a(h_a  相似文献   

12.
5.9正弦定理、余弦定理教材细解1.正弦定理(1)正弦定理:在△ABC中,a、b、c分别为角A、B、C的对边,R为△ABC的外接圆的半径,则有asinA=sibnB=sincC=2R.(2)正弦定理的证明:①向量法:先选定与其中  相似文献   

13.
著名数学家、教育家G·波利亚写过《数学与猜想》,他强调“要成为一个好的数学家,你必须首先是一个好的猜想家.”伟大的牛顿也说过:“没有大胆的猜想,就做不出伟大的发现.”学习数学令人最感困惑的也是最引人入胜的环节之一,就是如何发现定理及怎样证明定理,波利亚把“从最简单的做起”当作座右铭,提倡所谓“合情推理”,而猜想又是合情推理的最普遍、最重要的一种,本文对“计算———猜想———证明”模式作初步的介绍.例1计算:S1=11·2=12;S2=11·2+12·3=23;S3=11·2+12·3+13·4=34;……猜想:Sn=11·2+12·3+13·4+…+1n(n+1)=nn+1.①…  相似文献   

14.
众所周知 ,正三角形外接圆上任一点到三顶点的距离 ,其最长者必等于较短二者之和。若将其推广到一般的三角形 ,则得 :定理 P是△ABC外接圆上一点 ,P与C在AB的异侧 ,则PB·sinB +PA·sinA =PC·sinC ,证明 连结PA、PB、PC ,由托勒密定理 :PB·AC +PA·BC =PC·AB。在△ABC中 ,设它的外接圆半径为R ,由正弦定理得 :AC =2R·sinB ,BC =2R·sinA ,AB =2R·sinC ,将它们代入上式得 :PB·sinB +PA·sinA =PC·sinC。推论 1 如下左图 ,P是△ABC外…  相似文献   

15.
<正> 形如ab=cd+ef的几何问题,其思路不易展开,用“三角法”也有一串冗长的演算。今介绍一个三角恒等式用来证明这类几何问题,它可以省去添加辅助线和冗长计算的麻烦。 三角恒等式。 若α+β+γδ=π, 则sin(α+β)·sin(β+γ)=sinα·sinγ+sinβ·sinγ……(1) 证明:α+λ=π-(β+δ)、∴cos(α+γ)=-cos(β+δ)  相似文献   

16.
一、三角函数1.(全国高考题)△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4. (Ⅰ)求cosA+cotC的值; (Ⅱ)设(?)·(?)=3/2,求a+c的值. 解析(Ⅰ)由cosB=3/4得sinB=(1-(3/4)2)~(1/2)=7~(1/2)/4 由b2=ac及正弦定理得sin2B=sinAsinC. 于是cosA+cotC=1/tanA+1/tanC =cosA/sinA+cosC/sinC=(sinCcosA+cosCsinA)/sinAsinC  相似文献   

17.
贵刊文 [1 ]中给出了定理 1 在△ABC中 ,AD、BE相交于F ,若 AEEC=m ,CDDB=n ,则 S△ABFS△ABC=mmn +m +1 。此定理应用较广泛 ,但在证明过程中应用了中学教材中未介绍的梅涅劳斯定理 ,不适合向广大中学生讲授。本文给出一个易被中学生接受的浅显证明 ,并说明其在证明文 [2 ]定理中的应用 ,供参考。 (文 [1 ]中的证明请见文 [1 ],这里略。)证明 如图 1 ,作EH∥BC交AD于点H ,则EHCD =AEAC=AEAE +EC ①BFFE=BDEH=BDDC·DCEH ②图 1∴ BFFE =1n ·1 +mm =1 +mmn ,∴S△ABF ∶S△ABE =1 +m1 +m +mn。又∵S△ABE…  相似文献   

18.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

19.
246.设△AIBIC,的三边长分别是sinA、sinB、sinC,其中A、B、c是△ABc的三内角, ·~~.…,~一.,.~~1求证:△AIBI矶的外接圆半径是音.,、~;~一1一f王“动/‘一~’~~2. 证:首先,用正弦定理易证长度为sinA、sinB、sinC的三条线段可以构成一个三角形. 设R:、R分别表示△Al及q、△ABC的外接圆半径.由正弦定理得 aSinA bSinB2R图1图2一sinC一~.,_‘,n。*月。。、‘一R。。。。。四此。~‘的乙直‘习,心,·进I,u瓦二‘几’“p几‘12 247.已知a、乙、e〔R+,且a+b+e=1,求证: 刃7。+1+刃7b+1+刁7e+1)4. 证:由题设可知a((O,1),…a>砂,a>砂.…  相似文献   

20.
在平面几何中,求证线段等式a·b=c·d±e·f一类命题,是比较繁难的问题之一。本刊84年第1期发表的《“a·b=c·d±e·f”型命题的一种证明方法》。介绍了这类命题的几何证法,本文谈谈这类命题的三角证法。这类几何命题,可用正弦定理证明,也可用余弦定理证明。设a、b、c、d、e、f都是已知图形中的线段,用正弦定理证明a·b=c·d±e·f,其方法是: 第一步,利用正弦定理,考察已知图形中有关的边和角之间的关系,写出c·c±e·f/a·b的三角表达式; 第二步,根据已知条件,将这个三角表达式化简,证明它的值等于1。例1 在△ABC中(图1),已知∠A=2∠B, 求证BC~2=AC~2 AB·AC。证明设∠B=θ,则∠A=2θ,∠C=180°-3θ。在△ABC中,由正弦定理得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号