首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is complicated to design a computer simulation that adapts to students with different characteristics. This study documented cases that show how college students’ prior chemistry knowledge level affected their interaction with peers and their approach to solving problems with the use of computer simulations that were designed to learn electrochemistry. Students with different prior knowledge levels were found to use different approaches to solving problems with the use of computer simulations. In particular, the cases showed that students with a high level of prior knowledge tended to use the equations and formulas to accomplish the learning tasks and then use the computer simulations to confirm their predictions. Students with a low level of prior chemistry knowledge used the computer simulations as the main resources to accomplish their tasks. Considerations of individual differences and the integration of learning materials were suggested for further research on instructional use of computer simulations.  相似文献   

2.
Based on current theories of chemistry learning, this study intends to test a hypothesis that computer modeling enhanced hands-on chemistry laboratories are more effective than hands-on laboratories or computer modeling laboratories alone in facilitating high school students' understanding of chemistry concepts. Thirty-three high school chemistry students from a private all-girl high school in northeastern United States were divided into two groups to participate in a quasi-experimental study. Each group completed a particular sequence of computer modeling and hands-on laboratories plus pre-test and post-tests of conceptual understanding of gas laws. Each group also completed a survey of conceptions of scientific models. Non-parametric tests, i.e. Friedman's one-way analysis of ranks and Wilcoxon's signed ranks test, showed that the combined computer modeling and hands-on laboratories were more effective than either computer simulations or hands-on laboratory alone in promoting students' conceptual understanding of the gas law on the relationship between temperature and pressure. It was also found that student conception of scientific models as replicas is statistically significantly correlated with students' conceptual understanding of the particulate model of gases. The findings mentioned earlier support the recent call for model-based science teaching and learning in chemistry.  相似文献   

3.

Many studies have used the potential of computer games to promote students’ attitudes toward learning and increase their learning performance. A few studies have transformed scientific content into computer games or developed games with scientific content. In this paper, we employed students’ common misconceptions of chemistry regarding the properties of liquid to develop a computer game. Daily life situations and everyday phenomena related to the chemical understanding of the properties of liquid were also taken into account. Afterward, we applied a process-oriented, inquiry-based active learning approach to implement the game in a Thai high school chemistry course. We studied the implementation of a game-transformed inquiry-based learning class by comparing it to a conventional inquiry-based learning class. The results of this study include aspects of students’ conceptual understanding of chemistry and their motivation to learn chemistry. We found that students in both the game-transformed inquiry-based learning class and conventional inquiry-based learning class had a significantly increased conceptual understanding of chemistry. There was also a significant difference between the gains of both classes between the pre- and post-conceptual understanding scores. Moreover, the post-conceptual understanding scores of students in the two classes were significantly different. These findings support the notion that students can better comprehend chemistry concepts through a computer game, especially when integrated with the process-oriented, inquiry-based learning approach. The findings of this study also highlight the game-transformed inquiry-based learning approach’s support of students’ motivation to learn chemistry.

  相似文献   

4.
Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.  相似文献   

5.
To enhance the learning outcomes achieved by students, learners undertook a computer‐simulated activity based on an acid–base titration prior to a university‐level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant teachers were used as indicators of cognitive focus. During the interviews, students' frequency and level of “spontaneous” use of chemical knowledge served as an indicator of knowledge usability. Results suggest that the simulation influenced students toward posing more theoretical questions during their laboratory work and, regardless of attitudes, exhibiting a more complex, correct use of chemistry knowledge in their interviews. A more relativistic student attitude toward learning was positively correlated with interview performance in both the control and treatment groups. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1108–1133, 2007  相似文献   

6.
This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students’ conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one enhanced with metaconceptual scaffolding, while the other was not. The findings led to the following conclusions: (a) metaconceptual scaffolding enhanced simulation-based learning by significantly reducing science misconceptions, but it was not as effective in changing students’ mental models which consisted of multiple interrelated key concepts; (b) students’ beliefs about the speed of learning and the construction of knowledge were strong predictors of conceptual change learning outcomes; (c) epistemologically more mature students did not benefit more from metaconceptual interventions than those with less mature beliefs; (d) further interventions are needed to promote the development of students’ science epistemic beliefs in inquiry learning.  相似文献   

7.
This paper explores the effectiveness of using ‘structured examples in concert with prompting reflective questions’ to address misconceptions held by mechanical engineering students about thermodynamic principles by employing pre-test and post-test design, a structured questionnaire, lecture room observation, and participants’ interviews. Students’ misconceptions were identified through pre-tests that evaluated students’ understanding of the chosen concepts, while conceptual change was assessed in pre-test–post-test design that revealed students’ ability to apply the concepts and transfer skills from a worked example to satisfactorily undertake a fairly complex similar problem. The use of worked examples in concert with prompting reflective questions is effective for inducing correct conceptual change and effective problem-solving skills. However, it is recommended that engineering tutors should incorporate inquiry-based learning approach and computer simulations alongside the use of worked examples with prompting reflective questions in order to enhance students’ conceptual understanding of thermodynamic concepts.  相似文献   

8.
Many studies have previously focused on how people with different levels of expertise solve physics problems. In early work, focus was on characterising differences between experts and novices and a key finding was the central role that propositionally expressed principles and laws play in expert, but not novice, problem-solving. A more recent line of research has focused on characterising continuity between experts and novices at the level of non-propositional knowledge structures and processes such as image-schemas, imagistic simulation and analogical reasoning. This study contributes to an emerging literature addressing the coordination of both propositional and non-propositional knowledge structures and processes in the development of expertise. Specifically, in this paper, we compare problem-solving across two levels of expertise—undergraduate students of chemistry and Ph.D. students in physical chemistry—identifying differences in how conceptual metaphors (CMs) are used (or not) to coordinate propositional and non-propositional knowledge structures in the context of solving problems on entropy. It is hypothesised that the acquisition of expertise involves learning to coordinate the use of CMs to interpret propositional (linguistic and mathematical) knowledge and apply it to specific problem situations. Moreover, we suggest that with increasing expertise, the use of CMs involves a greater degree of subjective engagement with physical entities and processes. Implications for research on learning and instructional practice are discussed.  相似文献   

9.
New Pedagogies on Teaching Science with Computer Simulations   总被引:1,自引:1,他引:0  
Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1) patterns in teacher-student-computer interactions, and (2) the outcome of these interactions on student learning. Using Technological Pedagogical Content Knowledge (TPCK) as a theoretical framework, analysis of the data indicates that computer simulations were employed in a unique instructional cycle across 11 topics in the science curriculum and that several teacher-developed heuristics were important to guiding the pedagogical approach. The teacher followed a pattern of “generate-evaluate-modify” (GEM) to teach chemistry, and simulation technology (T) was integrated in every stage of GEM (or T-GEM). Analysis of the student survey suggested that engagement with T-GEM enhanced conceptual understanding of chemistry. The author postulates the affordances of computer simulations and suggests T-GEM and its heuristics as an effective and viable pedagogy for teaching science with technology.  相似文献   

10.
Refutation text is potentially more effective than standard text for conceptual change. Learning from text and graphic is also potentially superior to learning from text alone. In two studies, we investigated the effectiveness of both a refutation text and a refutation graphic for promoting high school students’ conceptual change learning about season change, as well as their metacognitive awareness of conceptual conflict and knowledge revision. In both studies, participants were randomly assigned to one of four conditions: (1) standard text with standard graphic, (2) standard text with refutation graphic, (3) refutation text with standard graphic, or (4) refutation text with refutation graphic. Both studies had a pretest, immediate post-test, and delayed post-test design and involved students with an initial common misconception about the causes of season change. In Study 2, explicit relevance instructions to observe the important illustration were given to the participants. In both studies, refutation text with refutation graphic was not more beneficial than other instructional materials, either at immediate or delayed post-test. In Study 1, more stable conceptual change learning emerged in readers of the refutation text with standard graphic compared to readers in the control condition. In Study 2, readers of the standard text with refutation graphic performed as well as readers of the refutation text with standard graphic. In addition, more readers of the refutation text with either graphic showed metacognitive awareness of their knowledge change compared to readers in the control condition. Educational implications underline the importance of relevance instructions for guiding readers toward the graphic and of the design of text-graphic pairing to sustain knowledge revision.  相似文献   

11.
Multimedia learning environments such as computer simulations are widely accepted as tools for supporting science learning. Although the design of multimedia learning environments can be domain specific, few studies have focused on the use of computer simulations for learning residential electrical wiring. This study aimed to determine whether students using computer simulations learned better than traditional classroom learners in the domain of residential wiring. A quasi‐experiment was implemented with 169 high school students. The simulation group participated in a series of computer simulations, whereas the control group received lectures and demonstrations from an instructor. Students' cognitive load as elevated by multimedia leaning tasks was compared with that of students learning using traditional methods. The simulation group learned significantly better and reported higher cognitive load than did the control group. Moreover, the simulation group managed cognitive resources more efficiently on transfer of learning than did the control group. Having more opportunities to interact with a simulation‐based learning environment could result in higher cognitive load. The higher cognitive load seemed to result in better performance on the achievement test and, therefore, the learners' mental effort was possibly invested mainly in meaning making in the virtual learning environments. Discussion of the results, instruments and research design, as well as suggestions for future studies are provided.  相似文献   

12.
The two case studies reported in this article contribute to a better understanding of how inquiry tasks and activities are employed as resourceful means for learning in higher professional education. An observation-based approach was used to explore characteristics of and challenges in students’ participation in collaborative inquiry activities in two first-year introductory courses in teacher and computer engineering education. The findings highlight that the students’ activities varied with regard to focus and structure and were shaped by the types of inquiry tasks, i.e. case analysis and project-based work, by how the inquiry process was guided and supported and the way the domain-specific knowledge resources and practices were introduced. An exploratory strategy and rather confined use of resources characterised the teacher education students’ inquiry, while collaborative programming, a trial-and-error approach and extensive use of external resources that of the engineering education students’. For the teacher students, the main challenge was to construct meaning of conceptual knowledge and to integrate different forms of knowledge as a lens for analysing practice. The computer engineering students experienced challenges with unpacking the underlying principles and knowledge black-boxed in the widely available resources. The article suggests that future research and curriculum designs should depart from a more refined understanding of inquiry as a learning means, by connecting inquiry activities to the specific knowledge domains, the type of tasks most suited to explore each of this domains and the challenges that may arise for students.  相似文献   

13.
The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students’ science achievement and conceptual understanding in the domain of state changes of water, focusing on the concepts of evaporation and condensation. A pretest-posttest design was used that involved 208 third-grade students assigned to the three learning conditions. A science achievement test and a two-tier conceptual test were administered to students before and after a teaching intervention. The results revealed that using virtual preceding physical manipulatives and virtual manipulatives alone enhanced students’ knowledge gains about evaporation and condensation greater than the use of physical laboratory activities alone. It was also found that the combination environment promoted students’ knowledge gains about these concepts equally well as the use of virtual laboratory activities alone. On the other hand, the results showed that using virtual preceding physical manipulatives promoted students’ conceptual understanding most efficiently compared to the use of either physical or virtual manipulatives alone; in contrast, experimenting with physical manipulatives alone was least influential for students’ conceptual understanding compared to the other manipulatives.  相似文献   

14.
Abstract

The selection of career paths and making of academic choices is a difficult and often confusing task for young people. The impact on their lives, however, is enormous as it can determine entire future career possibilities. In India, a general remedy to this stress is that instead of choosing a field of study tailored to individual preferences and strengths, topics are chosen that align with the choices of the students’ families or their friends. This can have the effect of entrenching patterns of intergenerational inequity. The aim of this research is to give students greater access to the knowledge capital which will help them make better choices. This is achieved by engaging students in the career planning process, in order to convey information in a likeable and credible way. The COMPCAT (Competency and Career Assessment Tool) game engine combines the use of learning analytics and real time, interactive computer simulations designed to gain insights into the students’ engagement in the making of these complex decisions. This paper presents the conceptual architecture of the game and demonstrates its role in enhancing the learning effectiveness of the students.  相似文献   

15.
16.
中学化学学习中的负迁移现象是指学生已有化学知识对学习内容的消极干扰作用。其在中学化学学习中的成因主要有七种:记忆定势、思维定势、理解定势、类比定势、直觉定势、操作定势和图示定势。化学教学过程中,教师应该从创设认知冲突、加强概念教学、概念转变学习、构建知识体系和重视方法教学五个方面制定对策,减少负迁移现象的发生。  相似文献   

17.
Many educational researchers have investigated how best to support conceptual learning in science education. In this study, the aim was to design learning materials using Physlets, small computer simulations, and to evaluate the effectiveness of these materials in supporting conceptual learning in secondary school physics. Students were taught in two different physics courses (conditions): one group of students (n = 40) was taught using Physlet-based learning materials, and the other (n = 40) was taught using expository instruction. To evaluate the designed materials, we assessed students’ thinking skills in relation to physics after the course and analyzed the results using an independent t test, multiple regression analyses, and one-way analysis of covariance. The results showed better thinking skills among students in the experimental group and supported a clear relationship between the physics course using Physlet-based materials and this improvement (p < 0.05). These results indicate that properly designed Physlet-based materials can effectively support conceptual learning.  相似文献   

18.
19.
Computerized learning environments offer several possibilities that can be used to improve the teaching of content along with the process. Research indicates that students benefit from additional guidance, particularly when computer-based instruction requires active construction of knowledge. This study examines the relative effectiveness of guided versus unguided computer-based instruction with respect to regular instruction in improving content knowledge and process skills among students with low and high chemistry achievement levels. The results indicate that the effectiveness of computer-based instruction increases when learning is supported by teacher-directed guidance. Computer-based instruction (with or without guidance) was observed to be more effective than regular instruction in improving process skills particularly for students with high chemistry achievement. However, although the students who received regular or guided computer-based instruction showed significant gains in content knowledge, students under unguided condition failed to construct the expected content knowledge.  相似文献   

20.
The study explored how to best use scaffolds for supporting students’ inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then examined how the three scaffold-fading conditions influenced students’ conceptual understanding, understanding of scientific inquiry, and inquiry abilities. Three grade-10 classes (N?=?105) participated in this study; they were randomly assigned to and taught in the three conditions. Data-collection procedures included a pretest–posttest approach and in-depth observations of the target students. The findings showed that after these inquiry units, all of the students exhibited significant learning gains in conceptual knowledge and performed better inquiry abilities regardless of which condition was used. The explicit and fading conditions were more effective in enhancing students’ understanding of scientific inquiry. The fading condition tended to better support the students’ development of inquiry abilities and help transfer these abilities to a new setting involving an independent socioscientific task about where to build a dam. The results suggest that fading plays an essential role in enhancing the effectiveness of scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号