首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>一、多变量不等式,以其中一个变量为主元构造新函数对于双变量的不等式证明,可以采取"定主元,降辅元"的方法,即先把辅元当成常数,以主元为变量构造一个新的函数,再利用导数法证明不等式。例1已知函数f(x)=ln(1+x)-x,g(x)=xln x。(1)求函数f(x)的最大值;(2)设0相似文献   

2.
不等式是高中数学教学的重点和难点,又是继续深造的重要基础,所以不等式一直都是高考命题的热点,常考常新,创意不断.在新课程的高考卷中,应用导数研究函数的性质,应用函数的单调性证明不等式,体现出新的综合热点,充分发挥导数的工具作用.1单变量不等式例1设b>1,求证:1 2b21,f'(x)<0,∴f(x)在(1, ∞)上单调递减,且f(x)在[1, ∞)上连续,f(1)=0,从而①式得证.②欲证:1 2b21),只需证2(b?1)<(1 b2)ln b<0,②设g(x)=2(x?1)?(1 …  相似文献   

3.
正函数是中学数学中最为重要的思想方法,一些不等式的证明常常运用函数思想进行求解.下面通过一些典型问题谈谈其在不等式证明中的应用.一、一元不等式的证明对于一元不等式的证明问题可考虑把问题转化为求函数的最大(小)值问题.1.证明不等式f(x)g(x)成立,可设F(x)=f(x)-g(x),问题转化为证明F(x)min0;证明不等式f(x)g(x)成立,可设F(x)=f(x)-g(x),问题转化为证明F(x)max0.例1当x0时,证明:ln(1+x)x-12x2.分析:不等式ln(1+x)x-12x2可化为ln(1+x)-x+  相似文献   

4.
不等式的证明,技巧性强,难度大,又是高考的重点.很多学生望而生畏,无从下笔,本文通过几例来说明一类绝对值不等式的证明.思想方法:归一法———消去几个参变量,只留下其中一个变量.【例1】已知二次函数f(x)=ax2 bx c,|f(0)|≤2,|f(1)|≤1,|f(-1)|≤1.求证:当x∈[-1,1]时,恒有|f(x)|≤178.证明:由已知,f(1)=a b c,f(-1)=a-b c,f(0)=c∴a=f(-1) f(1)-2f(0)2b=f(1)-f(-1)2,c=f(0)∴|f(x)|=|f(-1) f(1)-2f(0)2x2 f(1)-f(-1)2x f(0)|=|f(-1)(12x2-12x) f(1)(12x2 12x) f(0)(-x2 1)|≤|12x2-12x| |12x2 12x| 2|-x2 1|=-2x2-x …  相似文献   

5.
<正>近年的高三模拟试题中,经常出现含有两个变量的不等式证明问题.对这类问题,解决的方法之一是分析题目要求,适当变形,构造出一元函数关系并恰当地运用函数的单调性.下面以涉及导数的几道不等式题目进行分析,供师生参考.例1已知函数f(x)=ln x-ax2+(2-a)x.(1)讨论f(x)的单调性;(2)设a>0,证明:当0相似文献   

6.
<正>函数与不等式中的双变量问题历来是高考考查的一个热点,也是学生学习中的一个难点.本文利用转化与化归的思想,将双元变量转化为单元变量,并构造新的函数加以求解, 期望本文的几种构造法对你有所帮助.一、以形定构法对题设等式或不等式同解变形,转化为左右两边相同结构的式子,由"形"入手构造函数,可使问题获解.即如果是f(x1,x2)≥A(A为常数,下同)型的不等式,可化为g(x1)≥g(x2)的形式,则构造新函数y=g(x)求解.例1  相似文献   

7.
文[1]指出:解方程(不等式)的实质就是对方程两端同时施以各种运算,即等价变形,分离出一个变量,即解出一个未知数,在多元方程(不等式)中解出一个未知数就得显函数,如在F(x,y)=0中解出y就得显函数y=f(x),同样在不等式F(x,y)>0中解出y就得不等式y>f(x)(或y相似文献   

8.
一、构造函数例1 解不等式按常规解法,需化为六次不等式,不易求解,但若构造函数,则可转化为简单不等式求解. 解:令f(x)=x3 5x,则题目可转化为  相似文献   

9.
近几年高考加强了在知识交汇点上命题的力度,单独解不等式或证明不等式的题目有所减少,而频频出现考查不等式综合应用的试题,这更要引起我们的重视.一、试题评析11不等式与函数【例1】给出一个不等式x2 1 Cx2 C≥1 CC(x∈R)经验证:当C=1,2,3时,对于x取一切实数,不等式都成立.试问:当C取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出C的取值范围,使不等式对任何实数x都能成立.解:令f(x)=x2 1 Cx2 C设u=x2 C(u≥C)则f(x)=u2 1u=u 1u(u≥C)f(x)-C 1C=(u 1u)-C 1C=(u-C)(u C-1)u C要使不等式成立,则f(x)…  相似文献   

10.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

11.
一、利用基本不等式或不等式的性质放缩例1 若g(x)=f(x) 1,f(x)=log2~(1/2)(x 1),m、n、t>0且n2=mt,求证:g(m) g(t)≥2g(n).  相似文献   

12.
不等式x/x+1≤ln(1+x)≤x(x>0)(当且仅当x=0时取等号)是一个重要而有用的结论,以它为背景可衍生出许多重要不等式,本文就来谈谈这些不等式在高考中的应用. 例1 (2008年山东高考理科21题)已知函数f(x)=1/(1-x)n+aln(x-1),其中x∈N*,a为常数.  相似文献   

13.
在近年的高考试题中,经常会出现以ex与ln x为背景的函数不等式的证明问题,而学生普遍感觉比较困难,下面对此类问题加以探讨,供读者参考.一、以ex为背景的函数不等式例1(2014年福建理科卷20题第(Ⅱ)问)证明:当x>0时,x2相似文献   

14.
正本文首先介绍如何构造函数证明两个简单的不等式,在介绍如何构造函数证明复杂的不等式,以及在构造函数时如何如何整体把握.首先介绍两个有用的不等式ex≥x+1,x∈R与lnx≤x-1,x0.这两个不等式不难从图象上看出,注意y=lnx与y=x-1分别是y=ex与y=x+1的反函数,图象关于y=x对称.用导数证明如下:构造函数f(x)=ex-x-1,f'(x)=ex-1.  相似文献   

15.
在文[1]中,作者通过变量代换,把一类分式不等式的分母化为单项式,进而利用均值不等式和适当的放缩证明不等式.在本文中,我们通过对一道常见习题的引申,给出了此类分式不等式的另外一种简洁证明.在文[2]中,有如下的范例:例已知a、b、x、y均为正实数且(a~2/x) (b~2/y)= 1,证明:x y≥(a b)~2(为方便引申,叙述已经过修改).  相似文献   

16.
<正>深入研究2017年全国卷导数压轴题中的不等式求参问题,对比常规解题方法,借切线分隔处理含参不等式,解答更显简洁与灵动.题1(2017年全国高考题)已知函数f(x)=ax~2-ax-xln x,且f(x)≥0.(1)求a;(2)略.常规解答(1)f(x)的定义域为(0,+∞).设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.  相似文献   

17.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

18.
对于二次函数f(x)=ax2+bx+c(a≠0),如果方程f(x)=0的两个实根为x1,x2,那么二次函数f(x)可写成f(x)=a(x+x1)(x-x2),这就是二次函数的“两根式”.灵活地运用二次函数的两根式,可以巧妙地解决一些不等式问题. 例1 已知二次函数f(x)=x2+ax+b(a、b∈R). (1)若方程f(x)=0有两个非整数实根,且这两实根在相邻两整数之间,试证  相似文献   

19.
<正>构造函数法是一种常用的解题方法,比如函数与方程、不等式问题,小题中构造可导函数解不等式是常见题型,如果巧妙地构造函数,进而研究函数的性质,问题就会迎刃而解,下面就几种题型和大家一起交流一下。一、构造f(x)±g(x)型例1定义在R上的函数f(x),其导函数f'(x)满足f'(x)>1,且f(2)=3,则关于x的不等式f(x)相似文献   

20.
笔者在解决一些不等式问题时,经常遇到题目条件难以放缩或不等关系等,而应用导数常可以使问题简单许多. 1用导数降低原不等式次幂 例1设x为非负实数,n为正整数证明:n∑k=1xk2/k≥xn(n+1)/2. 证明 设f(x)=n∑k=1xk2/k-xn(n+1)/2.则f'(x)=n∑k=1kxk2-1-n(n+1)/...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号