首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
△ABC 中,若 a,b,c 分别是∠A,∠B,∠C 所对的边,△为 ABC 的面积,可得 ctgA=cosA/sinA=b~2 c~2-a~2/2bcsinA=b~2 c~2-a~2/4△,tg A/2=1-cosA/sinA=2bc-b~2-c~2 a~2/2bcsinA  相似文献   

2.
错在哪里     
解析几何中的一个常见题“P是椭圆(x~2)/(a~2) (y~2)/(b~2)=1上一点,F_1、F_2是焦点,若∠F_1PF_2=α,求△PF_1F_2的面积”。下面给出二种解法. 解法一:S_△=1/2|PF_1|·|PF_2|sinα,|F_1F_2|~2=|PF_1|~2 |PF_2|~2-2|FF_1||PF_2|cosα=(|PF_1| |PF_2|)~2-2|PF_1|·|PF_2|-2|PF_1|·|PF_2|cosα=4a~2-2|PF_1|·|PF_2|(1 cosα)=4c~2, ∴|PF_1|·|PF_2|=(4a~2-4c~2)/(2(1 cosα))=(2b~2)/(1 cosα)。  相似文献   

3.
△ABC中,若a,b,c分别是∠A,∠B,∠C所对的边,△为△ABC的面积,则有 ctgA=cosA/sinA=(b~2 c~2-a~2)/2bcsinA=(b~2 c~2-a~2)/4△, tg(A)/2=(1-cosA)/sinA=(a~2-(b-c)~2)/4△等。由此以及海伦面积公式,不难得出以下一些性质: 1. ctg A ctg B ctg C=(a~2 b~2 c~2)/4△.  相似文献   

4.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

5.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

6.
性质1 如果a,b,c三个数成等比数列,则a~2b~2c~2(1/a~3 1/b~3 1/c~3)=a~3 b~3 c~3证明: ∵a,b,c成等比数列 ∴b/a=c/b 左端=a~2b~2c~2(1/a~3 1/b~3 1/c~3) =b~2c~21/a a~2c~21/b a~2b~21/c =a~3 b~3 c~3=右端性质2 如果a,b,c,d四个数成等比数列,则  相似文献   

7.
和面积在平面几何中的地位相当,体积在立体几何中也有一番妙用。举例说明如下。一利用体积求点到平面的距离例1 长方体ABCD-A_1B_1C_1D_1中,AB=a,BC=b,BB_1=c,求顶点B_1到截面A_1BC_1的距离。解由题设,长方体AC_1中,AB=a,BC=b,BB_1=c, ∴A_1B=(a~2+c~2)~(1/2),BC_1=(b~2+c~2)~(1/2),A_1C_1=(a~2+b~2)~(1/2) 故cos∠BA_1C_1=((A_1B)~2+(A_1C_1)~2-(BC_1)~2)/(2A_1B·A_1C_1)=(a~2+c~2+a~2+b~2-b~2-c~2)/(2((a~2+c~2)~(1/2))·(a~2+b~2)~(1/2))=(a~2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))sin∠BA_1C_1=(1-(a~4)/(a~2+c~2)(a~2+b~2))~(1/2)=(a~2b~2+b~2c~2+c~2a~2)~(1/2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))  相似文献   

8.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

9.
第34届IMO预选题中有以色列提供的一道试题,在△ABC的三条边BC,CA,AB上分别取点D,E,F,使△DEF为等边三角形,a,b,c分别表示△ABC的三边长,而S表示它的面积,求证: DE≥22~(1/2)S·(a~2 b~2 c~2 4~3(1/2)S)~(-(1/2)) (1) (参见《中等数学》1996年第1期第29页) 本文给出一种较为简单的证明 证 如图△DEF是正三角形,令其边长为d,又设。 卢=A 60°=(p,则2S=d·(csina十bsin卢)=d[csma bsin(甲-o)] =d[(c-bcos~)sina bsinqocosa] =d(c-bcos~)~2 b~2sin2伊(1/2)·sin(O ")≤d(c-bcos(p)~2 b~2sin2甲(1/2)· 又(c-bcosqo)~2 b~2sin~2甲=c~2 b~2-2bccos(p=b~2 C~2-2bccos(A 60°) =b~2 c~2-bccosA 3~(1/2)bcsinA =(1/2)(b~2 c~2 a~2) 23~(1/2)S. ∴由(2)得d≥22~(1/2)S[a~2 b~2 c~2 43~(1/2)S]~-(1/2),即不等式(1)成立.  相似文献   

10.
性质 设△ABC的中线m_a、m_b、m_c构成△A'B'C',O、O'分别是△ABC和△A'B'C'内一点,且∠OAB=∠OBC=∠OCA=α,∠O'A'B'=∠O'B’C'=∠O'C'A’=α',那么α=α'。 证明 记△ABC和△A'B'C'的面积分别为△、△'。在△ABC中,由勃罗卡角等式及正、余弦定理,得ctgα=ctgA ctgB ctgC=cosA/sinA cosB/sinB cosC/sinC=(b~2 c~2-a~2)/(2bc sinA) (c~2 a~2-b~2)/(2ca sinB) (a~2 b~2-c~2)/(2ab sinC)=(a~2 b~2 c~2)/(4△)。在△A'B'C'中,同理可得ctgα'=(m_a~2 m_b~2 m_c~2)/(4△)。据熟知的结论,有 m_a~2 m_b~2 m_c~2=3/4(a~2 b~2 c~2), △'=(3/4)△, ∴ctgα=ctgα'。 又α、α'∈(0,π/2),故α=α'。  相似文献   

11.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

12.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

13.
第三十六届国际奥林匹克数学竞赛第二题: 设a、b、c为正实数,且满足a·b·c=1,试证:1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥3/2(1)。(俄罗斯提供) 证法一 由已知条件a·b·c=1,(1)与下面(2),等价:b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥3/2(2),现用含参数基本不等式:a~2 (λb)~2≥2abλ(λ为参数)的变形:a~2/b≥2λa-λ~2b。因而  相似文献   

14.
设△ABC的三内角A,B,C所对的边分别为a,b,c,外接圆半径为R,则有正弦定理(a/sin A)=(b/sin B)=(c/sin C)=2R.余弦定理a~2=b~2+c~2-2bccos A,b~2\c~2+a~2-2cacos B,c~2=a~2+b~2-2abcos C.在学完正余弦定理后,老师给我们提出了这样的间题:由于正弦定理可变形为α=2Rsin A,b=2Rsin B,c=2RsinC三种形式,而余弦定理也有三种形式,因此,对于余弦定理是否也有类似于正  相似文献   

15.
1 三角形中的半角正切公式△ABC中∠A,∠B,∠C的对边分别为a,b,c,面积为S,则tan(A/2)=((a~2-((b-c)~2))/(4S));tan(B/2)=((b~2-((a-c)~2))/(4S)); tan(C/2)=((c~2-((a-b)~2))/(4S)).证明由余定理知  相似文献   

16.
1.已知a、b、c为正整数,且a~2+b~2+c~2+48<4a+6b+12c,求(1/a+1/b+1/c)~(abc)的值.解:由a、b、c为正整数,得a~2+b~2+c~2+48和4a+6b+12c均为正整数,则不等式a~2+b~2+c~2+48<4a+6b+12c与不等式a~2+b~2+c~2+48+1≤4a+6b+12c等价.  相似文献   

17.
一、余弦定理的向量证明在任意△ABC中,a、b、c为∠A、∠B、∠C的对边,则a~2=b~2+c~2-2bccosA,b~2=a~2+c~2-2accosB,c~2=a~2+b~2-2abcosC(2011年陕西省理科(文科)第18题"叙述并证明余弦定理").(直接来原于课  相似文献   

18.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

19.
文[1]提到这样一组题:已知a,b,c为正数,求证: (1)(a~2 b~2 ab)~(1/2) (b~2 c~2 bc)~(1/2)>(c~2 a~2 ca)~(1/2); (2)(a~2 b~2)~(1/2) (b~2 c~2)>(c~2 a~2)~(1/2); (3)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)>(c~2 a~2-ca)~(1/2); (4)(a~2 b~2-ab)~(1/2) (b~2 c~2-bc)~(1/2)≥(c~2 a~2-ca)~(1/2). 并巧妙地利用复数证明了(4)。受文[1]的启发,本文将给出上述各不等式的构图证明,以及两个一般性的结论。 在下文中,记OA=a,OB=b,OC=c。 证明 (1)如图1,设∠AOB=∠BOC=∠COA=(2π)/3,由余弦定理知AB=(a~2 b~2 ab);…,再由AB BC>CA知  相似文献   

20.
<正>一、利用椭圆的定义解题例1已知椭圆方程(x~2)/~(a~2)+(y~2)/~(b~2)=1(a>b>0),焦点为F_1,F_2,P是椭圆上一点,∠F_1PF_2=α。求:△F_1、PF_2的面积(用a、b、α表示)。解:如图1,设P的坐标为(x,y),根据椭圆的对称性,不妨设P在第一象限。由三角形的余弦定理可知:|F_1F_2|~2=|PF_1|~2+|PF_2|~2-2|PF_1|·|PF_2|cosα=4c~2。①  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号