首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper gives some Razumikhin-type theorems on pth moment boundedness of stochastic functional differential equations with Markovian switching (SFDEwMS) by using Razumikhin technique and comparison principle. Some improved conditions on pth moment stability are also proposed. The main results of this paper allow the estimated upper bound of the diffusion operator associated with the underlying SFDEwMS of the Lyapunov function to have time-varying coefficients (the coefficients may even be sign-changing functions). Examples are provided to illustrate the effectiveness of the proposed results.  相似文献   

2.
This paper investigates the pth moment exponential stability of impulsive stochastic functional differential equations. Some sufficient conditions are obtained to ensure the pth moment exponential stability of the equilibrium solution by the Razumikhin method and Lyapunov functions. Based on these results, we further discuss the pth moment exponential stability of generalized impulsive delay stochastic differential equations and stochastic Hopfield neural networks with multiple time-varying delays from the impulsive control point of view. The results derived in this paper improve and generalize some recent works reported in the literature. Moreover, we see that impulses do contribute to the stability of stochastic functional differential equations. Finally, two numerical examples are provided to demonstrate the efficiency of the results obtained.  相似文献   

3.
The topic of the paper is both the pth moment and almost sure stability on a general decay rate for neutral stochastic functional differential equations, by applying the Razumikhin approach. This concept is extended to neutral stochastic differential delay equations. The results obtained in the paper are more general and they may be specialized on the exponential, polynomial or logarithmic stability. Moreover, some neutral stochastic functional differential equations which are not pth moment or almost surely exponentially stable, could be stable with respect to a certain lower decay rate. In that sense, some nontrivial examples are presented to justify and illustrate the usefulness of the theory. More precisely, one can say anything about both the pth moment and almost sure exponential stability, although the solutions are pth moment and almost surely polynomially or logarithmically stable.  相似文献   

4.
In this paper, the pth moment exponential stability for a class of impulsive stochastic functional differential equations with Markovian switching is investigated. Based on the Lyapunov function, Dynkin formula and Razumikhin technique with stochastic version as well as stochastic analysis theory, many new sufficient conditions are derived to ensure the pth moment exponential stability of the trivial solution. The obtained results show that stochastic functional differential equations with/without Markovian switching may be pth moment exponentially stabilized by impulses. Moreover, our results generalize and improve some results obtained in the literature. Finally, a numerical example and its simulations are given to illustrate the theoretical results.  相似文献   

5.
There are many hybrid stochastic differential equations (SDEs) in the real-world that don’t satisfy the linear growth condition (namely, SDEs are highly nonlinear), but they have highly nonlinear characteristics. Based on some existing results, the main difficulties here are to deal with those equations if they are driven by Lévy noise and delay terms, then to investigate their stability in this case. The present paper aims to show how to stabilize a given unstable nonlinear hybrid SDEs with Lévy noise by designing delay feedback controls in the both drift and diffusion parts of the given SDEs. The controllers are based on discrete-time state observations which are more realistic and make the cost less in practice. By using the Lyapunov functional method under a set of appropriate assumptions, stability results of the controlled hybrid SDEs are discussed in the sense of pth moment asymptotic stability and exponential stability. As an application, an illustrative example is provided to show the feasibility of our theorem. The results obtained in this paper can be considered as an extension of some conclusions in the stabilization theory.  相似文献   

6.
This paper investigates practical stability problem for nonlinear impulsive stochastic delayed systems driven by G-Brownian motion (IGSDSs). Practical stability can describe quantitative properties and qualitative behavior in contrast to traditional Lyapunov stability theory. Based on G-Lyapunov function, Razumikhin-type theorem, G-Itô formula, Burkholder–Davis–Gundy (B-D-G) inequalities I & II and stochastic analysis technique, some new criteria for moment and quasi sure global practical uniform exponential stability of IGSDSs are proposed. Finally, two examples are presented to verify validity of our theoretical results.  相似文献   

7.
8.
This paper investigates pth moment boundedness of neutral stochastic functional differential equations with Markovian switching (NSFDEsMS) based on Razumikhin technique and comparison principle. And pth moment stability is examined as a special case. Since the stochastic disturbances and neutral delays are incorporated, the considered system becomes more complex. Besides, the coefficients of the estimated upper bound for the diffusion operation associated with the underlying NSFDEsMS also may be chosen to be sign-changing functions instead of constant functions or negative definite functions, as a result, our results can work in general non-autonomous neutral stochastic systems. Finally, two examples are provided to show the effects of the proposed methods.  相似文献   

9.
In this paper, the global asymptotic stability in probability and the exponential stability in mth moment are investigated for random nonlinear systems with stochastic impulses, whose occurrence is determined by a Poisson process. The stochastic disturbances in the impulsive random nonlinear systems are driven by second-order processes, which have bounded mean power. Firstly, the improved Lyapunov approaches for the global asymptotic stability in probability and the exponential stability in mth moment are established for impulsive random nonlinear systems based on the uniformly asymptotically stable function. Secondly, the improved results are further extended to the impulsive random nonlinear systems with Markovian switching. Finally, two examples are provided to verify the feasibility and effectiveness of the obtained results.  相似文献   

10.
This paper is concerned with the input-to-state stability (ISS) of impulsive stochastic systems. First, appropriate concepts of stochastic input-to-state stability (SISS) and pth moment input-to-state stability (p-ISS) for the mentioned systems are introduced. Then, we prove that impulsive stochastic systems possessing SISS-Lyapunov functions are uniformly SISS and p-ISS over a certain class of impulse sequences. As a byproduct, a criterion on the uniform global asymptotic stability in probability for the system in isolation (without inputs) is also derived. Finally, we provide a numerical example to illustrate our results.  相似文献   

11.
In this paper, the issue about the stationary distribution for hybrid multi-stochastic-weight coupled networks (HMSWCN) via aperiodically intermittent control is investigated. Specially, when stochastic disturbance gets to zero, the exponential stability in pth moment for hybrid multi-weight coupled networks (HMWCN) is considered. Under the framework of the Lyapunov method, M-matrix and Kirchhoff’s Matrix Tree Theorem in the graph theory, several sufficient conditions are derived to guarantee the existence of a stationary distribution and exponential stability. Different from previous work, the existing area of a stationary distribution is not only related to the topological structure of coupled networks, but also aperiodically intermittent control (the rate of control width and control duration). Subsequently, as an application to theoretical results, a class of hybrid multi-stochastic-weight coupled oscillators is studied. Ultimately, numerical examples are carried out to demonstrate the effectiveness of theoretical results and effects of the control schemes.  相似文献   

12.
13.
14.
This paper investigates convergence of iterative learning control for linear delay systems with deterministic and random impulses by virtute of the representation of solutions involving a concept of delayed exponential matrix. We address linear delay systems with deterministic impulses by designing a standard P-type learning law via rigorous mathematical analysis. Next, we extend to consider the tracking problem for delay systems with random impulses under randomly varying length circumstances by designing two modified learning laws. We present sufficient conditions for both deterministic and random impulse cases to guarantee the zero-error convergence of tracking error in the sense of Lebesgue-p norm and the expectation of Lebesgue-p norm of stochastic variable, respectively. Finally, numerical examples are given to verify the theoretical results.  相似文献   

15.
This paper is to study the mean square stabilizability and regional stability of discrete-time mean-field stochastic systems. Firstly, a necessary and sufficient condition is presented via the spectrum of linear operator to illustrate the stabilizability of discrete-time mean-field stochastic systems. B(0, γ)-stabilizability is introduced and transformed into solving linear matrix inequalities (LMIs). Secondly, BM-stability is characterized, especially, the stabilities of circular region, sector region and annulus regions are discussed extensively. Finally, as applications, it is shown that B(0, γ1; γ2)-stability has close relationship with the decay rate of the system state response and the Lyapunov exponent.  相似文献   

16.
In this paper, we consider the stability of a class of stochastic delay Hopfield neural networks driven by G-Brownian motion. Under a sublinear expectation framework, we give the definition of exponential stability in mean square and construct some conditions such that the stochastic system is exponentially stable in mean square. Moreover, we also consider the stability of the Euler numerical solution of such equation. Finally, we give an example and its numerical simulation to illustrate our results.  相似文献   

17.
《Journal of The Franklin Institute》2019,356(18):11561-11580
This paper addresses the robust H filter design problem for a class of uncertain fuzzy neutral stochastic system with time-delay through Takagi–Sugeno (T–S) fuzzy model. By constructing an augmented Lyapunov–Krasovskii functional, some novel delay-dependent stability criteria for uncertain fuzzy neutral stochastic system with time varying delay are obtained in terms of linear matrix inequalities. By using the integral inequality in the neutral stochastic setting combined with delay decomposition approach, the H fuzzy filter is designed to guarantee the corresponding filtering error systems robustly asymptotically stable with a specified H performance index. At last, two numerical examples are presented to show the less conservatism than the previous results.  相似文献   

18.
This paper focuses on the problem of advancing a theorem to estimate the stability bound of delay decay rate α and upper bound delay time τ to guarantee the stability of time-delay systems. Based on the Lyapunov–Krasovskii functional techniques and linear matrix inequality tools, exponential stability and decaying rate for linear time-delay systems are also derived. These results are shown to be less conservative than those reported in the literature. Examples are included to illustrate our results.  相似文献   

19.
This paper concerns the simultaneous fault detection and control (SFDC) problem for a class of nonlinear stochastic switched systems with time-varying state delay and parameter uncertainties. The switching signal of detector/controller unit (DCU) is assumed to be with switching delay, which results in the asynchronous switching between the subsystems and DCU. By constructing a switching strategy depending on the state and switching delays, new sufficient conditions expressed by a set of linear matrix inequalities (LMIs) is derived to design DCU gains. This problem is formulated as an H optimization problem and both mean square exponential stability and fault detection of augmented system are considered. A numerical example is finally exploited to verify the effectiveness and potential of the achieved scheme.  相似文献   

20.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号