首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

2.
有这样一道习题: 设a sin bθ cos=c acscθ b secθ=c, 求证: sin2θ=(2ab)/(c~2-a~2-b~2). 这是一个流行很广的错题。下面我们做些探讨。 有关资料,给出了如下答案(记为方法一)。 由已知a cscθ b secθ=c,得a cosθ b sinθ=c.sinθcosθ,又∵a sinθ b cosθ=c,∴(a sinθ b cosθ)(a cosθ b sinθ)=c~2sinθcosθ, 整理后可得sin2θ=2sinθcosθ=(2ab)/(c~2-a~2-b~2) 这种证法用到了三角变换、三角恒等式、二倍角公式,并且中间没有不严密之处,所以解答是正确的、完  相似文献   

3.
对于形如y=asinx+bcosx的三角式,可变形如下:y=asinx+bcosx=a2+b2(sinx·a22+cosx·b a2+b2).由于上式中的aa2+b2与ba2+b2的平方和为1,故可记aa2+b2=cosθ,ba2+b2=sinθ,则y=a2+b2(sinxcosθ+cosxsinθ)=a2+b2sin(x+θ).由此我们得到结论:asinx+bcosx=a2+b2sin(x+θ),()其中θ由aa2+b2=cosθ,ba2+b2=sinθ来确定.通常称式子()为辅助角公式.它可以将多个三角式的函数问题,最终化为y=Asin(ωx+φ)+k的形式.下面结合近年高考三角题,就辅助角公式的应用,举例分类简析.一、求周期例1(2006年上海卷选)求函数y=2cos(x+π4)cos(x-π4)+3sin2x的最小…  相似文献   

4.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

5.
我们知道,辅助角公式asinx+bcosx=(a2+b2)(1/2)sin(x+φ)(其中a、b是不为零的实数,φ角由cosφ=a/(a2+b2)(1/2),sinφ=b/(a2+b2)(1/2)确定),能将某些函数化成y=Asin(ωx+φ)+  相似文献   

6.
定理1 设α_1,α_2,…,α_n∈[2kπ,(2k+1)π],其中 k 取自然数,α_1+α_2+…+α_n=θ(θ为定值),则 sin α_1+sin α_2+…+sin α_n≤nsin θ/n,当且仅当α_1=α_2=……α_n=θ/n 时等号成立(其中 n≥2).证明:采用数学归纳法.①当 n=2时,sin α_1+sin α_2=2sin((α_1+α_2)/2)cos((α_1-α_2)/2)=2sin(θ/2)cos((α_1-α_2)/2)≤2sin(θ/2).②假设 n=m 时命题成立(这里的 m 是大于2的自然数),  相似文献   

7.
题型1:求数量积、求模、求夹角 例1 (2011年高考江西理11)已知|a|=|b| =2,(a+2b)·(a-b)=-2,则a与b的夹角为______. 解析:根据已知条件(a+2b)·(a-b)=-2,去括号得|a|2+a·b-2|b|2=4+2×2×cosθ-2×4=-2(→)cosθ=1/2,故θ=60°.  相似文献   

8.
性质1设F为椭圆的一个焦点,其相应的准线为l,过椭圆上的一点M的切线交准线l于P,则PF⊥MF.证明过椭圆22ax2+by2=1(a>b>0)上点M(a cosθ,bsinθ)的切线为:x cos ysin1aθ+bθ=,则(2,(cos))sinPa b c ac cθθ?.∴sin,MFcoskba cθ=θ?k FP=c?b saicnoθsθ,∴k MF?kFP=?1,∴PF⊥MF.性质1'设F为抛物线y2=2px(p>0)的焦点,过抛物线上任一点(非顶点(0,0)M的切线交准线l于P,则PF⊥MF.证明设抛物线上一点M(t2/(2p),t)(非顶点(0,0)),则过M的切线为:2()2ty p xt=+p,∴22(,)22Pp t pt??,∴22222,MF FP2k pt kt pt p pt=?=??,∴k MF?kFP…  相似文献   

9.
题目已知sinαcosβ=-1/2,求cosαsinβ的取值范围.引申1已知sinαcosβ=α,cosαsinβ=b,则|a|+|b|≤1,当且仅当sin~2α+sin~2β=1时等号成立.证明|a|+|b| =|sinα||cosβ|+|cosα||sinβ|≤(sin~2α+cos~2β)/2+(cos~2α+sin~2β)/2=1,  相似文献   

10.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

11.
借助下面的数学模型,可方便地解决一些有关问题. 定理若a~1=b~1+c~1(a、b、c∈R~+,t∈R且t≠0),则对任意的k∈R,有 a~kb~k+c~k(k/t>1),(3) 证明:由条件可得 (a1/2)~2=(b1/2)~2+(c1/2)~2令 b 1/2=a 1/2sinθ, (0<θ<π). c 1/2=a 1/2cosθ,  相似文献   

12.
题目:已知sin2α=a,cos2α=b,则 tan(α+π4)的值是(  ) (A)b1-a(B)1+ab (C)1+a+b1+b-a(D)a-b+1a+b-1 解法(一):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=cos2α-sin2α(cosα-sinα)2=cos2α1-sin2α =b1-a.故选(A) 解法(二):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=(sinα+cosα)2cos2α-sin2α=1+sin2αcos2α …  相似文献   

13.
遗解是解题中常见错误之一,现举几例加以剖析. 一、忽视公式、性质成立的条件导致遗解例l 已知(b+c)/a=(a+c)/b=(a+b)/c=k,求k的值. 错解:由等比性质得: k=((b+c)+(a+c)+(a+b))/(a+b+c)=2  相似文献   

14.
三角中的一类题目,若巧用比和比例将显得较为简捷,请看下面几例: [例1] 已知(cosx)/a=(cos3x)/b(cosx≠0,) 求证:(a-b)/(3a b)=tg~2x 证:设(cosx)/a=(cos3x)/b=1/k 则a=kcosx,b=kcos3x ∴(a-b)/(3a b)=(kcosx-kcos3x)/(3kcosx kcos3x) =(2sin2x·sinx)/(4cos~3x)=(4sin~2x·cosx)/(4cos~2x)=tg~2x [例2] △ABC中,求证:cosA cosB cosC>1 证:由射影定理得, a=bcosC cdosB,b=ccosA acosC 两式相加得:a b=(a b)cosC c(cosA cosB)。∴ (a b)(1-cosC)=c(cosA cosB)  相似文献   

15.
性质 若 sinα与 cosα的一次齐次式asinα+ bcosα满足 asinα1 + bcosα1 =asinα2+ bcosα2 =0 (α1 ≠ kπ+α2 ,k∈ Z) ,则 asinα+bcosα恒等于零 .证明 由条件 asinα1 + bcosα1 =0 ,asinα2 + bcosα2 =0 ,∵α1 -α2 ≠ kπ( k∈ Z) ,∴ sinα1 cosα2 - cosα1 sinα2 =sin( α1 - α2 )≠ 0 ,∴上述关于 a,b的齐次线性方程组只有零解 a=b=0 ,∴ asinα+bcosα恒等于零 .利用上述性质 ,可以使一类三角函数式的求值、化简、证明问题 ,获得简明的解法 ,下面略举几例 ,以示说明 .例 1 求证 :sin( 5π6 - φ) + sin( 5π6 + φ) …  相似文献   

16.
定理 已知 (凹或凸 )四边形ABCD中 ,AB =a ,BC =b ,CD =c,DA =d ,p为半周长 ,pa=p -a ,等等 .则面积S =papbpcpd-abcdcos2 A +C2 .证明 :S =12 (adsinA +bcsinC) .4S2 =a2 d2 sin2 A +2abcdsinAsinC +b2 c2 sin2 C=a2 d2 +b2 c2 -a2 d2 cos2 A -b2 c2 cos2 C+2abcdcosAcosC -2abcdcos(A +C)=a2 d2 +b2 c2 -[adcosA -bccosC]2-2abcdcos(A +C)=a2 d2 +b2 c2 -14(a2 +d2 -b2 -c2 ) 2-2abcdcos(A +C) ,1 6S2 =4(a2 d2 +b2 c2 ) -(a2 +d2 -b2 -c2 ) 2  +8abcd -1 6abcdcos2 A +C2=4(ad +bc) 2 -(a2 +d2 -b2 -c2 ) 2-1 6abcdcos…  相似文献   

17.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

18.
不等式的证明是高中数学的一个难点,如果能仔细观察所给不等式的结构形式,依据题目的条件或结论的模式,联想所学过的知识,或已解决过的问题,制定解题方案,则可使命题迅速巧妙地得到解决.一、根据命题条件所提供的模式展开联想例1已知a,b∈R,|a|≤1,|b|≤1,求证ab (1-a2)(1-b2)≤1.分析:由|a|≤1,|b|≤1容易联想到正弦函数或余弦函数的有界性.证明:因为|a|≤1,|b|≤1,所以可设a=cosα,b=cosβ,α,β∈[0,π],则ab (1-a2)(1-b2)=cosαcosβ sinαsinβ=cos(α-β).又cos(α-β)≤1,22例2已知实数a、b、c满足a b c=0,abc=1,求证:a、b、c中必有…  相似文献   

19.
《数学教学通讯》1983年第4期上“证明不等式的若干特殊方法”一文中的例9:若θ∈(0,π/2),求证:cos(sinθ)>sin(cosθ)。笔者认为条件“θ∈(0,π/2)”可以取消,没有必要。现证明如下: 设f(x)=cos(sinx)-sin(cosx) (x∈R) 则 f(x)=cos(sinx)-cos(π/2-cosx)=-2sin((sinx-cosx+π/2)/2)×sin((sinx+cosx-π/2)/2)  相似文献   

20.
文 [1]中的例 1是 :若 sin4θa + cos4θb =1a+ b(a,b为正数 ) .求证 :sin8θa3 + cos8θb3 =1(a+ b) 3 .该例是文 [2 ]例 4的特例 :设 sin4xa + cos4xb =1a+ b,a>0 ,b>0 .证明 :对任何正整数 n都有 sin2 nxan-1 + cos2 nxbn-1 =1(a+ b) n-1 .文 [2 ]用了丢番图恒等式来证明 ,并认为若用三角式的恒等变形 ,则过程复杂 ,运算冗繁 .实际上 ,如果发现了条件与结论中的某种对称性 ,用数形结合的思想和方法来思考 ,揭示这个三角恒等式的几何背景 ,简便易行 ,过程简明 ,体现了数学的和谐美与简洁之美 .设椭圆 (或圆 )的方程为(a+ b)· X2b + (a+ …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号