首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
费马定理是指:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点.(1)若△ABC的3个内角均小于120°,则这个三角形的费马点与三个顶点的连线正好平分其所在的周角.(2)若△ABC有一内角不小于120°,则此钝角的顶点就是这个三角形的费马点.  相似文献   

2.
法国数学家费马曾提出一个历史名题:在三角形所在平面上求一点,使该点到三角形三个顶点的距离之和最小,人们称这个点为"费马点",它有如下结论: 结论1 三角形的三个角都小于120°时,费马点是三角形内与三个顶点的连线两两夹角为120°的点.  相似文献   

3.
<正>几何最值问题种类繁多且形式多样,是近几年重庆乃至全国中考中的热点.其中"费马点"问题研究的是,在三角形内部存在一个到其三个顶点的距离之和最小的点,此点和为费马点.而对于初中数学中常见的"费马点"问题,并没有过多地使用其结论,而是利用研究"费马点"问题的方法,其实质就是通过旋转变换,构造三线段共线,利用"两点之间,线段最短"解决最值问题.本文将分类讨论各角不超过120°三角形的"费马点"问题,与大家分享交流.一、常见"费马点"问题  相似文献   

4.
<正>法国数学家费马曾提出一个历史名题:在三角形所在平面上求一点,使该点到三角形三个顶点的距离之和最小,人们称这个点为"费马点",它有如下结论:结论1三角形的三个角都小于120°时,费马点是三角形内与三个顶点的连线两两夹角为120°的点.结论2三角形有一个角大于或等于120°时,费马点是钝角的顶点.中考主要考查结论1的应用,一般不涉及结论2.  相似文献   

5.
费马点     
在数学上,到三角形三个顶点距离之和最小的点称为费马点(也称费尔马点).它是这样确定的:如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果三个内角均小于120°,则在三角形内部对三边张角均为120°的点,是三角形的费马点.  相似文献   

6.
费马点     
《中学生数理化》2007,(4):51-51
数学上称到三角形3个顶点距离之和最小的点为费马点.它是这样确定的:如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;如果3个内角均小于120°,则在三角形内部对三边张角均为120°的点,是三角形的费马点.  相似文献   

7.
加权费马点与费马点既有相似点也有不同点.相似点是确定加权费马点的方法,以三角形的每一条边为底边,向外作以三边比为权重比的相似三角形,对应点连线交于一点,就是加权费马点;不同点是加权费马点在三角形内的条件,当原三角形的某个内角与权重比三角形对应的内角之和(共有三对)都小于180°时,加权费马点在三角形内,当其中一对角的和大于180°时,加权费马点在相应角的顶点上.  相似文献   

8.
<正>1.引言几何不等式是沟通代数与几何的重要媒介,它既有几何的直观形象,又有代数的逻辑严密.文[1]讨论了关于三角形内一点作三边对称点得到新三角形的方法.本文借鉴这种方法,分别取该点为外心,垂心,内心,重心,费马点和勃罗卡点,得到一系列优美简洁的表达式,并研究它们之间的不等关系,推导出一个新的几何不等式.  相似文献   

9.
费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.  相似文献   

10.
费马点及其应用   总被引:2,自引:0,他引:2  
设 P为锐角△ABC内一点 ,且∠ APB=∠BPC=∠CPA=1 2 0°,则称 P为△ABC的费马点 .下面对费马点及其应用作一番探讨 .1 关于费马点性质的讨论费马点有两个性质 ,一是费马点对三边的张角相等 ,二是费马点到三顶点的距离和最小 ,这是费马点应用的基础 .张角的相等性是显而易见的 ,而距离和的最小性却并非如此 .“距离和”能否量化 ?文 [1 ]曾给出“距离和”计算公式 ,即d=(12 {a2 b2 c2 [6(a2 b2 b2 c2 c2 a2 ) - 3 (a4 b4 c4) ]1 2 }) 1 2 ,但记忆困难 ,运用也不很方便 .换个思路 ,借助作图数形结合 ,即刻柳暗花明 .如图 1…  相似文献   

11.
十七世纪,法国数学家费马提出这样一个问题:在平面上给定三点,求第四点,使它到给定的三点的距离之和为最小。这样的点就叫做给定三点的费马点,有关费马点的几何性质在各种刊物上屡见不鲜,本文旨在向读者介绍一个有关费马点的几何不等式,以供参考。 设P点为△ABC的费马点,R_a、R_b、R_c分别为△PBC、△PCA、△PAB的外接圆半径,R和r分别为△ABC的外接圆和内切圆的半径,则  相似文献   

12.
有这样一个问题: 三个乡村合办一所小学,大家共同出资.为了节约经费,希望修筑的从三个乡村到小学的道路的总长最短,那么这所小学的地址应选在哪里呢? 据历史考证,真正解决这个问题的人是数学家施坦纳.设三个乡村分别用A、B、C三点表示, 所求的点P称为△ABC的费马点.费马点的确定分两种情况: (1)若三角形的最大内角小于120°,则费马点P位于三角形内部,且该点与三角形三个顶点  相似文献   

13.
众所周知 ,费马 (Fermat)点是三角形内的点到三角形各顶点的距离之和取最小值的点 .该点与三顶点相连 ,每两条连线所夹的角为 12 0° .那么 ,三角形内的点到三角形各顶点的距离和有没有最大值点呢 ?我们的回答是否定的 .这可由后面一不等式看出来 ,但我们可以给出三角形内的点到三角形各顶点的距离和的最佳上界 .顺便 ,根据其独特的方法 ,我们还获得了Klamkin不等式的一个另证及一个加强不等式 .     图 1定理 1 △ABC中 ,AB≥BC ≥CA ,P是△ABC内任一点 ,则PA PB PC <AB BC .证明 如图 ,P是△…  相似文献   

14.
<正>费马点的定义:如图1,在任意ABC中,点P是三角形内任意点,当PA+PB+PC的和最小时,点P即为ABC的费马点.此时,∠APC=∠BPC=∠APB=120°.本文着重研究与"费马点"相关的"三线碰头"问题的处理方法.  相似文献   

15.
Fermat,或是三角形的一个有趣的几何点。本文给出点与三角形三顶点距离和的两个命题及一个Fermat点的结论,进而推出其一系列有趣的性质。  相似文献   

16.
现行高中数学竞赛大钢,把费马点和三角形的重心列为两个重要的极值点,可见它们在数学竞赛中的地位非同小可.本讲对这两个极值点作一介绍,并举例说明它们的一些应用,供参考. 一、基础知识 1.费马点 在△ABC所在的平面内,使FA FB FC为最小的点F称之为费马点. 命题1 在△ABC,若max{A,B,C}<120°,那么与三边张角都等于120°的点F为费马点;若max{A,B,C}≥120°,那么最大内角的顶点为费马点. 证明该命题的基本思路是:任取异于F的点F′,证明FA FB FC≤F′A F′B F′C.可用旋转变换.也可用面积方法,这在一般的竞赛教材中都可以看到,不再赘述. ’ 说明:命题1曾被陕西省和前苏联选作竞赛题. 2.三角形的重心  相似文献   

17.
文[1]给出了ΔABC 特殊点(外心、内心、重心)与三角形三个顶点 A、B、C 所构成的三个小三角形的外接圆半径与ΔABC 外接圆半径之间的若干不等式,本文补充给出三角形的勃罗卡点、费马点的几个类似不等式,供参考.命题1 设 F 为ΔABC(最大内角小于120°)的费马点,ΔBFC、△CFA、△AFB 及ΔABC 的外接圆半径分别为 R_1、R_2、R_3、R,则  相似文献   

18.
1问题的背景浙教版义务教育教科书数学八年级(下)册第82页设计题:你听说过费马点吗?如图1,P为△ABC所在平面内一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫作费马点.费马点有许多有趣并且有意义的性质.例如,平面内一点P到△ABC三顶点的距离之和为PA PB PC,当点P为费马点时,距离  相似文献   

19.
数学与物理是两门密切相关的自然学科,通常,我们习惯把数学作为工具,用数学方法来帮助解决物理问题。然而笔者认为培养学生创新能力,就必须让学生打破这种常规的思维定势,以物理的视角,诠释数学问题,不仅体现了数理融合的自然和谐,对数学思维方法的完善也大有裨益。 一、在平面内,求一个多边形的费马点,(或推广的费马点,以下称费马点) 费马点:平面内—点P到已知三角形各顶点的距离之和  相似文献   

20.
三角形有外心、内心、重心、垂心,在平面几何中研究过三角形的“四心”的作法,在解析几何中可以利用方程的思想方法求三角形的“四心”,这两种方法,前者侧重几何特性,后者侧重代数运算.由于向量具有代数和几何的双重属性,以向量为视角,研究三角形的“四心”,可以揭示三角形“四心”与顶点及各心之间的联系.一、“四心”依托顶点,各具特色结论1设O是ABC所在平面内一点,则O为ABC外心的充要条件是|OA|=|OB|=|OC|(即点O到3个顶点距离相等)(OA OB)·AB=(OB OC)·BC=(OC OA)·CA=0(即O为三边垂直平分线的交点).证明如图1,设ABC的三…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号