首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
参考公式 :三角函数的积化和差公式sinαcosβ =12 [sin(α+ β) +sin(α -β) ]cosαsinβ=12 [sin(α+ β) -sin(α-β) ]cosαcosβ =12 [cos(α + β) +cos(α-β) ]sinαsinβ =-12 [cos(α + β) -cos(α -β) ]正棱台、圆台的侧面积公式S台侧 =12 (c′+c)l,其中c′、c分别表示上、下底面周长 ,l表示斜高或母线长 .球的体积公式V球 =43 πR3,其中R表示球的半径一、选择题 (本大题共 12小题 ,每题 5分 ,共 60分 ,在每小题给出的 4个选项中 ,只有一项是符合题目要求的 )1.(文 )直线 y=2x关于x轴对称的直线方程为 (   )   (A) y=-1…  相似文献   

2.
一、求角的范围例1若sinθ cosθ >0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限解∵sinθcosθ>0,∴sinθcosθsin2θ+cos2θ>0,∴tanθtan2θ+1>0,∴tanθ >0.选B.二、求值例2已知tan(π4+α)=2,求12sinαcosα+cos2α的值.解∵tan(α +π 4)=2,∴1+tanα1-tanα =2,tanα=1 3.∴ 12sinα cosα +cos2α=sin2α +cos2α2sinα cosα +cos2α=tan2α +12tanα +1=2 3.例3已知6sin2α+sinαcosα-2cos2α=0,α 缀[π2,π],求sin(2α+π3)的值.解显然cosα≠0,∴原条件可化为6tan2α+tanα-2=0,解得tanα=-2…  相似文献   

3.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

4.
一些三角问题转化为代数问题,运用韦达定理逆定理构造方程来解有时是很简便的。兹举例说明之。 [例1] 已知sinα·cosα=-(3~(1/2))/4,且(π/2)<α<3π/4,求sinα和cosα的值。解:∵(sinα+cosα)~2=sin~2α+cos~2α+2sinα cosα=1-(3~(1/2))/2,(又(π/2)<α<(3π/4)), ∴sinα+cosα>0。  相似文献   

5.
有意识地利用习题的特点 ,对于培养学生良好的思维品质 ,逐步形成良好的数学观念 ,提高数学素养 ,具有十分重要意义 .下面就此谈谈本人看法和体会 .一、利用迷惑性 ,培养深刻性有些习题表象的迷惑性常使思维肤浅的学生误入歧途 ,因此表象的迷惑性有利于培养学生思维的深刻性 .【例 1】 已知 3sin2 α+2cos2 β =2sinα ,求sin2 α +cos2 β的取值范围 .错解 :由条件得cos2 β =sinα -32 sin2 α ,∴sin2 α+cos2 β =sin2 α+(sinα-32 sin2 α) =-12 (sinα -1 ) 2 +12 ,当sinα =-1时 ,sin2 α +cos2 β的最小值为 -32 ;当sinα =1时 ,s…  相似文献   

6.
利用圆心到直线的距离d与圆的半径r的大小关系,可以求有关三角题的值域、最值、角的大小、判断三角形形状、证明三角不等式以及求参数的取值范围等问题. 1.求值域 例1 求函数u=(1-sinα)/(2 cosα)的值域. 解 因为 u=(1-sinα)/(2 cosα)可化为 sinα ucosα 2u-1=0.所以点(sinα,cosα)既在直线 x uy 2u-1=0上,又在圆x2 y2=1上,于是必有 |2u-1|/((1 u2)~(1/2))≤1,  相似文献   

7.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

8.
三角公式中有的涉及根式前双重符号的取舍,如何取舍正负号,学生往往感到困难。下面举一个例题来说明正负号取舍的方法。例题:用sinα来表示sinα/2和cosα/2 解:∵ sin~2α/2+cos~2α/2=1 (1) 2sinα/2cosα/2=sinα (2) 由(1)+(2)得 (sinα/2+cosα/2)~2=1+sinα sinα/2+cosα/2=±(1+sinα)~(1/2) (3)(1)-(2)得  相似文献   

9.
【题】已知ccooss42βα ssiinn42βα=1,求证:ccooss42αβ ssiinn24αβ=1.法1(三角换元)∵ccooss2βα2 ssiinn2βα2=1,∴可设ccooss2βα=sinφ,ssiinn2βα=cosφ,则sinφcosβ cosφsinβ=cos2α sin2α=1,∴sin(φ β)=1,∴φ β=2π 2kπ,k∈Z,∴sinφ=sin2π-β 2kπ=cosβ,同理,cosφ=sinβ,∴cos2α=cos2β,sin2α=sin2β,∴ccooss42αβ ssiinn24αβ=cos2β sin2β=1.法2(巧构直线与圆相切模型)由已知Accooss2βα,ssiinn2βα,B(cosβ,sinβ)都在单位圆x2 y2=1上,圆x2 y2=1过点B的切线方程l是cosβx sinβy=1,A点也满足此…  相似文献   

10.
参考公式:三角函数的积化和差公式sinαcosβ=12[sin(α+β)+sin(α-β)]cosαsinβ=12[sin(α+β)-sin(α-β)]cosαcosβ=12[cos(α+β)+cos(α-β)]sinαsinβ=-12[cos(α+β)-cos(α-β)]正棱台、圆台的侧面积公式S台侧=12(c′+c)l其中c′,c分别表示上、下底面周长,l表示斜高或母线长球体的表面积公式:S球=4πR2其中R表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)(理)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则M∩N等于()A.{x|x<-2}B.{x|-2相似文献   

11.
sinα cosα与 sinαcosα常出现于各类三角问题之中.解决这类问题的关键是灵活运用 sinα cosα与sinαcosα的关系,问题便可顺利获解.基本关系(sinα cosα)~2=1 2sinαcosα基本作用 1.可用 sinα cosα表示 sinαcosα;2.可用 sinαcosα表示sinα cosα;3.设 sinα cosα=t,则sinαcosα=(t~2-1)/2,将三角问题转化成代数问题.  相似文献   

12.
命题 :设点 P(x0 ,y0 ) ,⊙ O:x2 + y2 =r2 ,直线 l:x0 x + y0 y =r2则 1当点 P在圆上时 ,直线 l与⊙ O相切 ;2当点 P在圆外时 ,直线 l与⊙ O相交 ;3当点 P在圆内时 ,直线 l与⊙ O相离 .1 证明在直线 l上任取一点 Q(x,y) ,因为向量 OP =(x0 ,y0 ) ,OQ =(x,y)所以 OP .OQ =x0 x + y0 y =r2即 | OP| .| OQ| .cos∠ POQ =r2因为 l的一个方向向量 v=(-y0 ,x0 )所以 v.OP =0 OP⊥ l故圆心 O到 l的距离d =| OQ| .cos∠ POQ =r2| OP|| OP| >r时 ,d r;故命题为真 .2 画法已知点 P和⊙ …  相似文献   

13.
下面以三角中的几个基本公式 (定理 )的证明为例 ,谈谈向量基础知识在解题中的灵活应用 ,望能增添同学们学习向量知识的兴趣 .【例 1】 证明cos(α+β) =cosαcosβ-sinαsinβ .课本上采用解析法证明这一公式 ,学习向量后 ,运用平面向量的数量积 (内积 )证明公式显得十分简单 ,这种灵活运用新知识解决问题的思想方法毫无疑义是符合新教材编写精神的 .证 :在单位圆O中 ,设∠P1 Ox =α , ∠P2 Ox =-β ,则P1 ,P2 坐标为P1 (cosα ,sinα) ,P2 (cosβ ,sin( -β) ) .即OP1 =(cosα ,sinα) , OP2 =(cosβ ,-sinβ) .∵∠P1 OP2 =α …  相似文献   

14.
高中实验修订课本数学第一册(下)的 4.7部分有这样两个三角恒等式: sinα+sinβ=2sinα+β2cosα-β2; cosα+cosβ=2cosα+β2cosα-β2. 这两个三角恒等式通常叫做和差化积公 式,有了它们,我们可容易推出: 定理:(1)sinα+sinβ2≤sinα+β2 (当且仅当α=β时等号成立); (2)cosα+cosβ2≤cosα+β2 (当且仅当α=β时等号…  相似文献   

15.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

16.
“数”与“形”是数学研究的两大对象,在数学解题中以“形”研究“数”,会使问题直观形象,解法灵活简便,因此在解某些代数问题时,可依据题目的特征,构造出一些简单的几何图形,把所求的问题转化为几何问题,然后运用几何等知识去解决所求问题.笔者将对某些代数题构造几何图形妙解进行归类分析。 1 构造单位圆解三角题 例1 已知cosα cosβ-cos(α β)=3/2,α,β∈(0,π),求α,β的值. 解 由cosα cosβ-cos(α β)号得cosα cosβ-cosαcosβ sinαSinβ-3/2=0. (1-cosβ)cosα sinβsinα cosβ-3/2=0.(1)  相似文献   

17.
本文试图通过数例阐述“解几”在三角函数解题中的应用。事实上,若恰当地依据“已知”,构造“解几”模型,化“数”为“形”,就能使得解题过程直观明了,不仅能加深对基础知识的理解,还能渗透各学科知识间的内在联系,提高解题能力。一、求三角函数值例1 已知acosα bsinα=c,acosβ bsinβ=c(ab≠0,α-β≠κπ),求cos~2 α-β/2的值。解∵点A(cosα,sinα),B(cosβ,sinβ)为直线ax by-c=0与圆x~2 y~2=1的两个交点,构造图1,|AB|~2=(cosα-cosβ)~2 (sinα-sinβ)~2=2-2 cos(α-β)。  相似文献   

18.
解三角题要注意挖掘隐含条件   总被引:1,自引:0,他引:1  
在解决三角函数问题中,学生往往会因忽视题中的隐含条件而导致错误.下面结合几例学生易错题进行说明.例1已知α∈(0,π),且sinα cosα=12,则cos2α的值为()(A)74(B)-74(C)±74(D)-14错解把sinα cosα=12两边平方,得1 sin2α=14,∴sin2α=-34.又α∈(0,π),∴2α∈(0,2π).∴c  相似文献   

19.
具有圆的几何意义的数学问题,如能构造出该圆,那么问题便会迎刃而解,请看: 一、求值例1 已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,求cos2α+cos2β+cos2γ的值. 解:构造一直角坐标系,设三点P(cosα,sinα)、Q(cosβ,sinβ)、R(cosγ,sinγ),由给  相似文献   

20.
<正>引题在平面直角坐标系x Oy中,圆C的参数方程为{x=-1+2cosθ,y=1+2sinθ{,(θ是参数).直线l经过点P(2,2),倾斜角α=π/6.⑴写出圆的标准方程和直线l的参数方程.⑵直线l与圆C相交于A、B两点,求|PA|·|PB|的值.对于这类题,想必我们是十分熟悉的,它的常规解法是利用直线参数方程中t的几何意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号