首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文 [1 ]将命题 :对任何自然数n ,存在自然数m ,使得(2 - 1 ) n=m +1 -m作如下推广 :1 .对任何自然数p、n ,存在自然数m ,使得(p +1 -p) n=m +1 -m .2 .对任何自然数n、p、r,存在自然数m ,使得(p +r -p) n=m +rn-m .笔者将此命题再作如下推广 :1 .对于任何自然数n ,存在自然数m ,使得(2 - 1 ) -n=m +1 +m .2 .对于任何自然数p、n ,存在自然数m ,使得(p +1 -p) -n=m +1 +m .3 .对于任何自然数n、p、r,存在自然数m ,使得(p +r -p) -n=m +rn+mrn .下面证明推广 3 .证明 :因为 (p +r -p) n(p +r -p) -n=1 ,而由文 [1 ]知(p +r -p) n=m +rn-m .所…  相似文献   

2.
题:已知AC⊥AB,BD⊥AB,AD与BC相交于E,EF⊥AB于F。设AC=p,BD=q,EF=r,AF=m,FB=n。(1)用m、n表文r/p;(2)用m,n表示r/q;(3)求证:1/p+1/q=1/r。 1) 把条件AC⊥AB、BD⊥AB,EF⊥BA改为CA∥EF∥DB,结论还成立吗? 2) 1/p+1/q=1/r说明p、q定了,r也就定了,能否  相似文献   

3.
在不等式的王国中,我们知道有很多不等式都是用华罗庚先生的名字命名的,其中有一个初等不等式如下: 华罗庚不等式[1]设ak为实数,p,q>0则(P-n∑k=1ak)2+q(n∑k=1a2k)≥pq2/n+q.仅当a1=a2=…=an=qp/n+q时等号成立.  相似文献   

4.
用数学归纳法证明整除性问题,如:求证f(n)能被a整除,设f(n)是随自然数变化的已知整式(或整数),a是给定的整式(或整数).由假设n=k时命题成立,来推证n=k+1时命题也成立,是最关键的一步,也是最难证明的一步.如果用f(k+1)除以f(k),求出它的余数(或余式),即设f(k+1)=qf(k)+r,q为商,r为余数(或余式).若r能被a整除,则由假设可知f(k+1)能被a整除,即n=k+1时命题也成立.这样,就极大地简化了证明过程.  相似文献   

5.
一整除的概念任意的整数 a 和自然数 b,总可以找到这样的整数 q 和 r,使a=bq+r (1)其中0≤ra。令 r=a-bq,那么0≤r相似文献   

6.
m+n与m-n称为对偶式.本文用对偶式解三道根式问题.例1设(?),求(?)的值.解由(?)知道(?),则xy=1,x-y=1.于是原式(?)例2已知x=1/2(19911/n-19911/n)(n是自然数)  相似文献   

7.
1 引言为了叙述的方便,我们约定:既约分数 q/p(p 是素数,且 p≠2,5)可化成循环小数,最短循环节形式的循环小数我们称之为 p-小数;最短循环节的长度称为该小数的长度.我们不妨设既约分数 q/p 是真分数,即1≤qp),由带余除法 n=pm+r(m 为整数,r相似文献   

8.
我们知道,有这样两个组合公式: C_n~m=C_(n-1)~m+C_(n-1)~(m-1); C_r~r=C_(r+1)~r+C_(r+2)~r+…+C_(r+n+1)~r =C_(r+n)~(r+1)现在,我们来考虑组成这两个公式的各个组合数的倒数是否也能组成相应的公式?下面我们分别来讨这两个问题。定理1 设m,n为自然数,且m≥2,m≤n,则  相似文献   

9.
在代数式运算中,对含无理式的分式,一般要进行有理化变形,使分母(或分子)不再含无理式,这就是有理化分母(分子)的问题。解决这个问题的关键是求分母(分子)的有理化因子。本文先介绍几种常用的求有理化因子的方法;然后利用对称函数理论,给出求有理化因子的一般方法;最后就可有理化的问题进行一些讨论。 (一) Ⅰ.有些无理式可利用代数恒等式求其有理化因子。例如表达式 S=(X~pY~q…Z~r)/(1/n)(n≥2为自然数,X、Y、Z为有理式,p、q、r为小于n的自然数)的有理化因子为  相似文献   

10.
形式为 a n + 1 =pa n + s/qa n + r , p,q,r,s ∈ R的线性分式递推数列是高中数学数列部分常见题型。本文从初等数学的角度:化归思想,取倒数,转化等差(或等比)数列,给出形式为a n + 1 =pa n + s/qa n + r的线性分式递推数列的通项公式及周期存在的判定,并举例说明其价值。  相似文献   

11.
等比性质:如果a/b=c/d=…=m/n(b+ d+…+n≠0).那么a+c+…+m/b+c+…+n=a/b. 因为在等比性质中,每个比的分子、分母的 系数都是1,所以在初中几何课本中直接利用 等比性质的题很少,如果根据分式的基本性质 把等比性质推广,或者是把等比性质压缩,使用 推广或压缩后的等比性质做题,就可以简化做 等比性质:如果a/b=c/d=…=m/n(b+ d+…+n≠0).那么a+c+…+m/b+c+…+n=a/b. 因为在等比性质中,每个比的分子、分母的 系数都是1,所以在初中几何课本中直接利用 等比性质的题很少,如果根据分式的基本性质 把等比性质推广,或者是把等比性质压缩,使用 推广或压缩后的等比性质做题,就可以简化做  相似文献   

12.
证明两个自然数互质,通常是用反证法,本文介绍另一种重要方法——辗转相除法。下面通过几个例子说明。例1,求证:相邻两个自然数必定互质。证明:设相邻的两自然数为n、n+1, 用n除n+1得余数r_1=1,再用1除n得余数r_2=0,∴(n,n+1)=r_1=1故相邻故相邻两个自然数必定互质。例2,求证:相邻两个自然数的平方和与这两个数的和互质(杭州大学编,《中学数  相似文献   

13.
1.在方程x~3+lx~2+mx+n=0中,系数l、m、n都是自然数旦分别能被自然数p、p~2p~3整除,方程的根为α、β、γ,则对于任何自然数k,α~k+β~k+γ~k为整数,且能被p~k整除。 2.在方程x~4+lx~3+mx~2+rx+q=0中,系数l、m、r、q都是自然数且分别能被自然数p、p~2、p~3、p~4整除,方程的根为α、β、γ、δ,则对于任何自然数k,α~k+β~k+γ~k+δ~k为整数且能被p~k整除。一般的有: 3.在方程x~n+α_1x~(n-1)+α_2x~(n-2)+…+a_(n-2)x~2+a_(n-1)x+α_n0中,系数α_1、α_2、…、α_都是自数然且分别能被自然数p、p~2、…、p~n整除。方程的根为x_1、x_2、…、x_n,则对于任何自然数k,x_1~k+x_2~k+…+x_a~k为整数且能被p~k整除。  相似文献   

14.
2010青少年数学国际城市邀请赛   总被引:1,自引:1,他引:0  
熊斌 《中等数学》2011,(1):20-26
个人赛 一、填空题(每小题5分,共60分) 1.已知实数p、q、r满足 p+q+r=26,1/p+1/q+1/r=31. 则p/q+q/r+r/p+p/r+r/q+q/p=______.  相似文献   

15.
在进行二次根式的运算时 ,往往需要把分母有理化 ,而分母有理化的方法则是把分子、分母同乘以分母的有理化因式 ,因此分母有理化的关键是找分母的有理化因式。我们清楚 ,两个含有二次根式的代数式相乘 ,如果它们的积不含有二次根式 ,就说这两个代数式互为有理化因式。由此可知 :1. a与 a互为有理化因式例 1.把下列各式分母有理化 :112;2 x+ 1x- 1(x>1)。解 :112=22· 2=22 ;2 x+ 1x- 1=x+ 1· x- 1x- 1· x- 1=x2 - 1x- 1。2 .a+ b与 a- b互为有理化因式例 2 .分母有理化 :n+ n2 - 4+ 2n- n2 - 4+ 2(n>2 )。解 :n+ n2 - 4+ 2n- n2 - 4+ 2= …  相似文献   

16.
我们知道,对于整数 a 和自然数 b,如果进行除法运算 a b得商 q,余数 r,就有:a÷b=q……r(0≤r相似文献   

17.
对n个自然数平方和公式12+22+32+……+n2=n(n+1)(2n+1)6的推导,参考书中采用“迭加法”是无可非议的,但根据素质教育的新理念,我们应对一个问题从多角度、多层次去思考,对一个事物从多方面去解释,对一个对象用多种方式去表达,以期对问题认识得更深刻、更全面.因而,变换角度,构建正方形表格模式推导自然数平方和公式是必要的.※推导一※(1)通过观察、归纳,并运用高斯求和公式,发现每个自然数的平方有如下规律:12=1,22=1+2+1,32=1+2+3+2+1,……n2=1+2+3+……+(n-1)+n+(n+1)+……+3+2+1.平方数转化为自然数和的形式,状如“金字塔”.(2)建模.为…  相似文献   

18.
近年的某些数学资料中,有这样一道题: “若{S_n}是公比为q(q 0,q 1)的等比数列,(S_n=a_1+a_2+…+a_n,a_1 0)求证:{a_n}也是等比数列。这里,n应理解为任意自然数。这道题错了。因为由题设,  相似文献   

19.
数学参考题     
1.先求出 q 与 r 的值∵(q~2+r/2)=1979 ∴q~2+r=39583958开平方的整数部分是62,我们来证 q=62。由题意知(a~2+b~2/a+b)r设 q≥63,则 q~2≥3969,得 r≤-11,与 r≥0矛盾,  相似文献   

20.
本文证明了对任何正整数n,q,r,方程sum from k=0 to n(x-qk)~r=sum from k=1 to n(x+qk)~r仅有正整数解:r=1,x=qn(n+1);r=2,x=2qn(n+1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号